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Abstract—Domain models are used by requirements analysts
to rationalize domain phenomena into discrete entities that drive
requirements elicitation and analysis. Domain models include
entities, actors or agents, their actions, and desired qualities
assigned to states in the domain. Domain models are acquired
through a wide range of sources, including interviews with subject
matter experts, and by analyzing text-based scenarios, regulations
and policies. Requirements automation to assist with elicitation
or text analysis can be supported using masked language models
(MLM), which have been used to learn contextual information
from natural language sentences and transfer this learning to
natural language processing (NLP) tasks. The MLM can be
used to predict the most likely missing word in a sentence, and
thus be used to explore domain concepts encoded in a word
embedding. In this paper, we explore an approach of extracting
domain knowledge from user-authored scenarios using typed
dependency parsing techniques. We also explore the efficacy of
a complementary approach of using a BERT-based MLM to
identify entities and associated qualities to build a domain model
from a single-word seed term.

Index Terms—requirements, domain model, word embedding

I. INTRODUCTION

In requirements engineering, the requirements analyst seeks
to understand the problem world, or domain, to best identify
requirements for the solution [16]. Challenges to acquiring
domain knowledge include that sources of such knowledge
may be difficult to access, distributed or conflicting. In
addition, stakeholders may have tacit knowledge that they,
or the requirements analyst, fail to recognize or mention
during elicitation [26]. With regard to textual representations
of domain knowledge, such as scenarios, the text may be
incomplete or ambiguous [21], [22]. Automated techniques
to support elicitation and text analysis are often knowledge
agnostic, meaning the techniques are limited to the knowledge
that is presented to them by user. With advances in machine
learning (ML), however, new opportunities exist to automate
elicitation and domain analysis tasks.

Neural models in particular have shown strong performance
across many natural language processing (NLP) tasks. The
construction of these models requires large training dataset,
up to millions to billions of data. In NLP, transfer learning, in
which information is learned in one or more domains or tasks
and later transferred to another domain or task, has reduced the
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need for large datasets [36]. This is particularly true of word
embeddings, which are often constructed using unsupervised
machine learning methods over large corpora [21], [25], [32].

In this paper, we explore two approaches to acquire domain
models: (1) we collect a user-authored scenario corpus in the
directory service domain and analyze it to extract domain
knowledge using typed dependency parsing, and (2) we evalu-
ate word embeddings to discover their efficacy for discovering
domain models using limited input data, frequently one word,
to bootstrap the discovery. Specifically, we employ a BERT-
based Masked Language Model (MLM), which is a model
initialized using a word embedding and then trained with
sentences that contain one missing word. MLM models have
been used to study the Cloze task [8], which is a psychological
test given to humans where one sentence is provided with a
missing word and the human subject is asked to present the
missing word. With regard to MLMs, the model is evaluated
by predicting which words are most likely to fill the missing
word. We also investigate the advantage and drawbacks of
each approach and how they can be used complementary to
each other.

The paper is organized as follows: we review related work in
Section II and background in Section III, before presenting our
approach in Section IV. Next, we present results in Section V
with discussion in Section VI and the conclusion and future
work in Section VII.

II. RELATED WORK

We now discuss related work on domain model develop-
ment, including work in typed dependencies, phrase structure
grammars and named entity recognition.

Domain models, which describe knowledge about specific
application domains [6], are built to capture requirements for
systems. Techniques exist for automatically extracting domain
model elements, such as using rules based on information
retrieval, using natural language dependency parsing [2], and
so on.

Typed dependencies correspond to syntactic and grammati-
cal relationships between words in natural language (NL), such
as the nominal subject of a sentence, or the direct object of a
verb [20]. Dependencies have been used in requirements engi-
neering to extract assertions from NL specifications for use in
formal verification [28], legal meta-data from regulations [27],



and software features from user manuals [23]. They have
also been used to classify requirements as either functional
or non-functional [7], [15], and to demarcate requirements in
a specification [1]. Conceptual models have been extracted
from user stories using syntactic rules that resemble typed
dependencies (e.g., nsubj and nmod) [24]. Natural language
syntax varies widely, even when describing the same concept:
e.g., the two sentences ”the large apartment has two bedrooms”
and ”the apartment, which has two bedrooms, is large” yield
two different dependency graphs. Thus, successful applications
of typed dependencies require an analysis of a large number
of examples, or a narrow domain with few syntactic varia-
tions to express requirements-related information of interest.
While current work using typed dependencies with machine
learning classification shows promise [1], [7], [15], more work
is needed to extract requirements-related entities from text,
including approaches based on custom models.

Whereas typed dependencies describe binary, grammati-
cal relations among words, phrase structure grammars relate
words to nested phrases that are typed based on their gram-
matical role, such as a noun, verb, or prepositional phrase [12].
Arora et al. combine phrase structure grammars, typed depen-
dency parsing, co-reference resolution and stop words with
18 domain model extraction rules to identify concepts, asso-
ciations, cardinalities and attributes in four industrial natural
language requirements documents [2]. This approach has been
extended using active learning to reduce false positives by 45%
to yield a .96 precision [3]. Saini et al. combine named entity
recognition and co-reference resolution with rules to extract
classes, relationships, attributes and cardinalities from problem
descriptions [30].

Sleimi et al. describe a tool to automatically extract re-
quirements information from legal texts using a concept
typology [29]. The typology includes statement-level types
(e.g., definitions, permissions and obligations), and phrase-
level types (e.g., actor, action, modality, time) can be used
to extract text-based concept instances from text.

In natural language processing, named entity recognition is
the identification of entities in text that conform to a small
number of predefined types, e.g., person, organization, date,
etc. [17]. Entity typing aims to classify entities into a larger
typology, upwards of more than 10,000 types. Dai et al.
combined Hearst patterns with a masked language model to
generate weak labels for entity typing [10].

Whereas NER is used to classify entities into a shallow
taxonomy, methods exist to identify richer ontologies for
entities. Youn et al. employed word embeddings to extend a
food ontology from an ontology scaffold [37]. The extension
is build using a mapping function that maps word embedding
vectors to a target class, and performance is evaluated using
measures of granularity and cohesiveness. Ravichander et al.,
inspired by the Cloze task, describe using MLMs to discover
hypernyms, which are more general categories for words [34].
Wang and He identify hypernyms using bidirectional residual
relation embeddings (BiRRE) to create a latent projection
model with negative regularization [35]. In this model, a

candidate hypernym-hyponym term pair is represented as a
BiRRE vector, and project model is used to simulate the
generation of these vectors.

III. BACKGROUND

We now discuss background on Masked Language Models,
and Bidirectional Encoder Representations from Transformers.

A. Masked Language Model

The Masked Language Model (MLM) is trained by ran-
domly masking some of the tokens from the natural language
inputs, and aiming to predict the original vocabulary id of
the masked word based only on its context [9]. Since words
from both sides of the mask are used in training the model,
the model is bi-directional in nature. At inference time, the
model is usually given a previously unseen natural language
input with a [MASK] token in it, and asked to predict the
most likely substitutes for the masked token. The model
would usually give possible substitutes to fill in the mask,
and each substitute’s confidence score, a value between 0 and
1 indicating how certain the model is that the substitute is
correctly assigned, with a confidence score of 1 indicating
certainty. An example masked input can look like ”I watched
a [MASK] at the cinema and it was fun”, where the model
tries to predict the best work to fill in the [MASK].

MLM is a very useful part in training a language model in
an unsupervised fashion, because it helps the language model
understand relationship between tokens. Such language models
can then be fine-tuned to adapt to specific downstream tasks.

B. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers
(BERT) is a transformer-based language representation model
that utilizes the attention mechanism to learn word embed-
dings. BERT is pre-trained with two unsupervised tasks,
namely a Masked Language Model and a Next Sentence
Prediction model, to understand relations between tokens and
relations between sentences. The parameters of BERT can then
be fine-tuned to adapt to specific downstream tasks, such as
Named-Entity Recognition, Language Translation, Question
Answering, and so on.

IV. APPROACH

We aim to answer the following research questions (RQs):
RQ1: How is domain knowledge used in user-authored

scenarios?
RQ2: Given an embedding, what kind of domain knowledge

can be extracted?
To answer these questions, we conduct our research with

two different methods. The first method collects a user-
authored scenario corpus in four directory service domains
(apartment, hiking trail, restaurant, health clinic), then extracts
simple domain models out of the scenarios using typed depen-
dencies. The method is retrospective in that the corpus must
exist in order to perform knowledge extraction. The second
method uses seed question templates that include a domain-
specific noun, a seed verb and a mask, and have Masked



Language Model predict the substitute for the mask in order
to extract domain elements to construct domain models. The
method is prospective in that, with the help of the pretrained
Masked Language Model, no scenario corpus is required at
the time of extraction. We talk about the two approaches in
detail below.

1) Domain Knowledge in User-Authored Scenarios: We
investigate RQ1 by collecting and analyzing an English-
language, user-authored scenario corpus in the directory ser-
vices domain, which covers any software used to find or
locate a thing of interest, such as an apartment or restau-
rant. The scenarios were collected using Amazon Mechanical
Turk in an IRB-approved research study. Amazon Mechanical
Turk (AMT) workers volunteered and consented to participate
by accepting the human intelligence task (HIT), and then
were provided a single question, e.g., ”How do you find an
apartment?” and asked to write a scenario that includes four
elements: steps in the process; goals that the author wants to
achieve; values or qualities the author pays attention to; and
obstacles that could go wrong with the process, and how the
author responds. The question prompts were created to reflect
a variety of directory service situations, from unified services,
wherein a user uses a single web application (app) to answer
the question, to where a user uses a collection of unaffiliated
services to forage for their answer by combining information
from multiple web apps. The prompts used in this step appear
in Table I. We use the category name of a prompt to refer
to the scenarios elicited using that prompt. Eligible workers
completed over 5,000 Human Intelligence Tasks (HITs), had
an approval rating greater than 97%, and were located in the
United States. Scenarios were rejected if they did not respond
to the prompt, or if they contained more than five spelling,
capitalization or grammar errors. Workers were paid $2.00 for
each accepted scenario, and workers who completed a scenario
in the top 20% of ranked scenarios were paid an additional
bonus of $1.00. Scenarios were ranked based on their coverage
of the four elements. Finally, worker identifiers were removed
from the scenarios prior to analysis.

Category Scenario Question Prompt
Apartment How do you find an apartment?
Restaurant How do you choose a restaurant to eat at?
Hiking How do you plan a trail hike in a park?
Health Clinic How do you choose a clinic to visit when

you get sick?

TABLE I
SCENARIO PROMPTS LISTED BY CATEGORY

Next, we used typed dependency parsing to identify nouns
that were the object of verbs in scenarios to extract simple
domain models. For example, in the apartment finding do-
main, this approach yields commonly used concepts, such as
“apartment” and “budget,” with link from these concepts to
common actions over those concepts, such as “visit,” “view,”
and “show” for user actions on apartments and “compile,”
“fit,” and “determine” for user actions on budgets. To that

end, we used the Stanza toolkit [33] based on the CoreNLP
framework to identify verbs and dependent nouns in obj or obl
typed dependencies. These results are reported in Section V-A.

2) Domain Knowledge in Masked Language Models: We
investigate RQ2 using three approaches: (1) seed questions that
include a domain-specific noun, a seed verb and a mask; (2)
seed questions with intensifier, such as adjectives that change
the intensity of the mask; (3) seed questions with inputs,
wherein the input can be an adjective or a verb learned from
a previous result. We now illustrate these three approaches.

The seed question consists of a template, including a
domain-specific noun (e.g., apartment, restaurant), a verb (e.g.,
has, is, be) and the mask [MASKED]. Seed questions may
aim to elicit modifiers attached to the noun. An example seed
question would be “I want an apartment that is [MASKED]”,
where the Masked Language Model is asked to fill in the
“[MASKED]” field with possible substitutes, such as “cheap”,
“clean”, “spacious”, etc. Depending on the model’s confidence
score, these fillers will be ranked from highest to lowest confi-
dence score. Seed questions may also aim to elicit entities that
are associated with the domain-specific noun. An example seed
question here is “The apartment has a [MASK.]” where the
Masked Language Model may fill in entities like “basement”,
“bathroom”, etc.

Next, we investigate whether including intensifiers, such
as “very” or “extremely”, in the seed questions will yield
in more value-laden results for the masked word than the
seed question alone. For example, in the apartment-searching
domain, we vary the seed question of “The apartment is
[MASKED]” by adding intensifiers, such as “The apart-
ment is very [MASKED]” and “The apartment is extremely
[MASKED]”.

Finally, we study whether using results from prior queries
can yield better results for a seed question. For example, the
query “I want an apartment that is [MASKED]” may yield
the result “spacious” for the mask, which is a modifier that
can then be used to construct a new query “The [MASKED]
apartment was spacious” or “The spacious apartment will be
[MASKED]”. Such queries can yield possible action sub-
stitutes, such as “vacated”, “renovated”, etc. Furthermore,
these action substitutes, together with the modifier, may be
used in another round of query to elicit actors, such as
“The [MASK] renovated the spacious apartment”, where the
Masked Language Model may fill in actors like “owners”,
“couple”, etc.

The results of the above approaches will be shown in
Section V-B.

V. RESULTS

We show our results for both of the research methods
mentioned in Section IV. We discuss how the results may
be used to extract domain models in Section VI-A.



A. Results for Domain Knowledge in User-Authored Scenarios

We present the result of scenario corpus collection and
analysis. The scenario corpus was constructed by recruiting
65 distinct crowd workers to respond to 4 scenario prompts
shown in Table I. Each worker may choose to answer one or
more of the prompts, with each worker answering an average
of 1.2 prompts. The corpus consists of 78 authored scenarios,
each with a minimum of 150 words, yielding 737 sentences
and 14,614 words, overall.

Table II - V present the most frequently used nouns
across the elicited scenarios in the apartment finding, restau-
rant finding, hiking trail finding and health clinic finding
domains, including the number of dependencies in which the
nouns occurred (Dep.), the number of scenarios in which the
nouns occurred (Scen.), and example verbs where the nouns
were in the obj or obl typed dependencies. Notably, the top
nouns correspond to key activities in this domain: finding an
apartment involves make lists, searching an area, scheduling
appointments, and compiling and fitting a budget.

Noun. Dep. Scen. Example Verbs
apartment 77 20 find, move, view, visit, sort
list 19 9 make, create, narrow, compile, rank
area 15 10 search, consider, look, investigate
place 13 10 move, narrow, find, qualify, look
appointment 8 8 schedule, make, set
budget 8 6 compile, develop, fit, determine
search 6 5 make, conduct, limit, continue
price 6 5 negotiate, sort, filter, ask
rent 5 5 pay, afford, look, split
one 5 3 call, find, choose, make

TABLE II
TOP-10 NOUNS RANKED BY DEPENDENCY COUNT FOR APARTMENT

FINDING SCENARIO

Noun. Dep. Scen. Example Verbs
restaurant 39 17 find, going, choosing, brainstorm, search
food 13 7 eat, handle, acquire, deliver, like
review 12 8 check, has, use, look, go
meal 10 7 makes, take, enjoy, order, choose
time 8 6 takes, go, wait, have, make
place 7 5 looking, pick, find, going, enjoy
type 7 4 think, agree, like, have, going
something 5 5 grabbing, try, look, type, feel
option 5 5 limits, vote, has, get, look
search 5 4 narrow, do, widen, run

TABLE III
TOP-10 NOUNS RANKED BY DEPENDENCY COUNT FOR RESTAURANT

FINDING SCENARIO

B. Results for Domain Knowledge from Word Embeddings
using MLM

We now report results from extracting domain knowledge
from a masked language model using three query templates:
seed question, seed question with intensifier, and seed question
with inputs, as described in Section IV-2. In all experiments
below, we used the Masked Language Model from Hugging-
Face, pretrained on a union of five large English corpora [18].

Noun. Dep. Scen. Example Verbs
hike 40 16 start, prefer, plan, choose, join
trail 33 12 find, search, finish, pick, walk
park 17 8 search, find, locate, review, plan
day 8 5 plan, hike, choose, have, go
backpack 7 7 prepare, pack, put
route 7 5 take, plan, find, know, prefer
water 6 6 get, pack, put, bring
experience 6 5 get, value, want, make, enjoy
weather 6 4 check, choose, encounter, have
hiker 5 5 take, allow, is, like

TABLE IV
TOP-10 NOUNS RANKED BY DEPENDENCY COUNT FOR HIKING TRAIL

FINDING SCENARIO

Noun. Dep. Scen. Example Verbs
clinic 48 17 choose, research, search, call, avoid
doctor 22 11 find, see, get, pick, call
insurance 18 11 accept, check, take
review 18 11 find, read, sort, look, check
time 12 9 set, wait, spend, get, call
appointment 12 7 set, make, attend, get, have
care 10 6 get, give, receive, take, prefer
choice 7 5 rank, narrow, filter, make, think
place 7 5 pick, search, find, get, want
website 6 6 go, dig, list, visit, find

TABLE V
TOP-10 NOUNS RANKED BY DEPENDENCY COUNT FOR HEALTH CLINIC

FINDING SCENARIO

Each section below corresponds to a query template, in
which we present the masked query followed by the results,
consisting of the top five unmasked words ordered by their
model confidence scores (in parentheses). Please note that the
results are not comprehensive due to space limits. For more
experiment results, please refer to our open sourced code at
[38].

1) Seed Question: includes only a domain-specific noun
phrase, a verb and a mask, in this case one of apartment,
hiking trail, restaurant or health clinic and the verb to-be.

a) Seed Question to elicit modifiers: We use the seed
question templates below to elicit modifiers attached to the
domain-specific noun phrase.

Query: I want an apartment that is [MASK].
Result: furnished (0.0883), nice (0.0501), beautiful (0.0384),
perfect (0.0372), comfortable (0.0352)

Query: I want a hiking trail that is [MASK].
Result: paved (0.1067), easy (0.0551), safer (0.0367),
accessible (0.0297), hiking (0.0261)

Query: I want a restaurant that is [MASK].
Result: nice (0.0437), perfect (0.0363), amazing (0.0291),
delicious (0.0256), open (0.0227)

Query: I want a health clinic that is [MASK].
Result: open (0.0690), functional (0.0399), thriving (0.0325),
affordable (0.0251), good (0.0243)

b) Seed Question to elicit entities: We use the seed
question templates below to elicit entities associated with the
domain-specific noun phrase.



Query: The apartment has a [MASK].
Result: basement (0.0977), bathroom (0.0637),
restaurant (0.0594), balcony (0.0519), garage (0.0518)

Query: The hiking trail has a [MASK].
Result: waterfall (0.1667), campground (0.0807),
cafe (0.0745), lighthouse (0.074), fountain (0.0376)

Query: The restaurant has a [MASK].
Result: cafe (0.3504), bar (0.1818), bakery (0.0824),
restaurant (0.0523), pub (0.0227)

Query: The health clinic has a [MASK].
Result: pharmacy (0.3899), clinic (0.0685),
playground (0.0501), cafeteria (0.0319), library (0.0285)

We note a few observations from the above results. (1)
Model responses may be words in the query, e.g., a hiking
trail that is hiking, which are responses that can be discarded.
(2) The extracted domain model can be enhanced by finding
the binary opposites of discovered adjectives using antonyms
in a dictionary, e.g., a hiking trail that is unpaved, difficult,
unsafe, or inaccessible as antonyms of the above responses.
(3) Some qualities are clearer or more vague than others, e.g.,
a restaurant that is open, which refers to operating hours,
versus one that is amazing, which could refer to numerous
other qualities, such as dining room ambience, food quality
or taste, etc. This introduces a need to refine the meaning of
vague qualities, which could require a richer source of domain
knowledge beyond the masked language model.

2) Seed Question with Intensifiers: includes the seed ques-
tion and an adjective to change the intensity of the masked
word.

Query: The apartment is [MASK].
Result: vacant (0.1076), furnished (0.0755), rented (0.0701),
uninhabited (0.0270), empty (0.0216)

Query: The apartment is very [MASK].
Result: spacious (0.1084), small (0.0606), modern (0.0445),
expensive (0.0414), luxurious (0.0344)

Query: The apartment is extremely [MASK].
Result: expensive (0.1267), spacious (0.0664),
cramped (0.0661), dilapidated (0.063), luxurious (0.047)

Query: The hiking trail is [MASK]..
Result: paved (0.1597), accessible (0.0948), nearby (0.0788),
maintained (0.0344), blazed (0.0292)

Query: The hiking trail is very [MASK].
Result: scenic (0.2369), popular (0.1287), steep (0.068),
rugged (0.0499), short (0.0415)

Query: The hiking trail is extremely [MASK].
Result: scenic (0.2999), steep (0.0884), rugged (0.0806),
popular (0.0655), difficult (0.0431)

Query: The restaurant is [MASK].
Result: closed (0.1758), vegetarian (0.0914), open (0.044),

staffed (0.0372), haunted (0.0251)

Query: The restaurant is very [MASK].
Result: popular (0.1848), modern (0.0396), upscale (0.0261),
small (0.0219), expensive (0.0197)

Query: The restaurant is extremely [MASK].
Result: popular (0.255), expensive (0.0508),
crowded (0.0258), modern (0.0226), successful (0.0224)

Query: The health clinic is [MASK].
Result nearby (0.1888), closed (0.1167), staffed (0.0987),
open (0.0326), operational (0.0254)

Query: The health clinic is very [MASK].
Result modern (0.0602), small (0.0529), good (0.0439),
busy (0.041), close (0.0306)

Query: The health clinic is extremely [MASK].
Result busy (0.0828), poor (0.0793), small (0.0523),
dilapidated (0.0507), crowded (0.0467)

3) Seed Question with Inputs: includes the seed questions
and an inputted response from a prior query.

a) Seed Question with Modifier Inputs: We present the
results where the inputted response from a prior query is a
modifier. Due to space limit, for each domain (apartment,
hiking trail, restaurant, health clinic) we only present query
results using one example modifier input.

Query: The [MASK] apartment was furnished.
Result entire (0.1981), whole (0.0706), penthouse (0.0639),
upstairs (0.0353), downstairs (0.0171)

Query: The furnished apartment will be [MASK].
Result furnished (0.1017), renovated (0.0887),
refurbished (0.0808), rented (0.0486), demolished (0.0432)

Query: The [MASK] hiking trail was paved.
Result entire (0.354), original (0.0372), main (0.0237),
paved (0.0206), adjacent (0.0171)

Query: The paved hiking trail will be [MASK].
Result paved (0.0755), maintained (0.0455),
removed (0.0442), restored (0.044), upgraded (0.0367)

Query: The [MASK] restaurant was nice.
Result whole (0.1677), entire (0.071), seafood (0.0173),
italian (0.017), chinese (0.0131)

Query: The nice restaurant will be [MASK].
Result renovated (0.0897), reopened (0.0776),
refurbished (0.0468), rebuilt (0.0383), demolished (0.0372)

Query: The [MASK] health clinic was open.
Result mental (0.0429), public (0.025), community (0.0214),
local (0.0207), nearest (0.0181)

Query: The open health clinic will be [MASK].
Result renovated (0.0781), closed (0.0641),
reopened (0.0531), opened (0.043), built (0.042)



b) Seed Question with Modifier and Action Inputs: We
present the results where the inputted responses from a prior
query are a modifier and an action, in order to elicit the actor.
Due to space limit, for each domain (apartment, hiking trail,
restaurant, health clinic) we only present query result using
one example modifier and one example action input.

Query: The [MASK] renovated the furnished apartment.
Result owners (0.0681), couple (0.0539), owner (0.0423),
family (0.022), landlord (0.0206)

Query: The [MASK] restored the paved hiking trail.
Result state (0.0478), volunteers (0.0412),
department (0.0352), park (0.032), owners (0.0319)

Query: The [MASK] refurbished the nice restaurant.
Result owners (0.1122), owner (0.0547), company (0.0422),
municipality (0.0349), club (0.029)

Query: The [MASK] restored the open health clinic.
Result government (0.1265), earthquake (0.028),
city (0.0232), municipality (0.0186), legislature (0.017)

Notably, these highest-confidence responses to the queries
using the Masked Language Model represent important, yet
general starting points needed to distinguish the seed elements.
For example, in the apartment-finding domain, important char-
acteristics people pay attention to do include whether the
apartment is furnished, modern, spacious, etc., or whether it
contains a balcony. Others, such as whether the apartment
contains a basement may be less relevant. Actions that are
highly related to an apartment, like furnish, renovate, vacate,
as well as actors that perform these actions, such as owners,
landlords, etc, are also relevant, whereas other actors, such as
couples, may be unnecessarily specific.

VI. DISCUSSION

We now discuss the significance of the results.

A. Domain Model Extraction

Both approaches to extract domain knowledge offer differ-
ent advantages and disadvantages. The extraction using typed
dependencies and a scenario corpus has the advantage of
discovering a diverse and highly relevant set of actions for each
entity. However, that approach requires that one already have a
corpus with scenarios to support the extraction. Alternatively,
the extraction using Masked Language Model finds associated
actors, actions, and modifiers for constructing the domain
model without a corpus by using the seed question templates
and reusing prior query results. The disadvantage is that the
results obtained using the MLM are limited to high-confidence
words that may not provide the same kind of diversity and
relevance to the seed noun phrase as what we see in the
corpus-extracted results. It is likely that unless the corpus in
the first approach exists and has a large number of statements
containing these domain knowledge, the first approach may
not be easy to find the domain knowledge required to build
the domain models like we do using the second approach.

Moreover, the two approaches can be complementary in
building a domain model. The domain knowledge extracted
from user-authored scenario with typed dependency can be
used as inputs to the seed question templates in the second
approach, in order to extract more complicated and relevant
domain knowledge using Masked Language Model. For ex-
ample, we found the noun “area” and its verb “search” with
the first approach, and may use a seed question like “I want to
search for an [MASK] area” in the second approach, to elicit
modifiers that would describe the noun “area”. Knowledge
learned from using the Masked Language Model may also be
used to give specific directions to authors when they author
their scenarios. For example, we learned that “dilapidated” is
a property describing the apartment, and may ask the author
to write a scenario about his preference of the outlook or state
of the apartment he is searching for.

Limitations in human knowledge can impact the com-
pleteness of domain models extracted from user-authored
scenarios, and motivate the utility of MLM-based models
to support identifying gaps in domain models. Research in
psychology has revealed theories on cognitive bias, such as
when individuals frame their next thought from their last
thought, called anchoring bias, and availability bias, which
states that people tend to heavily weight their judgements
toward most recent information [31]. These biases can lead
users to author scenarios in ways to overlook important or
related concepts. The MLM-based models may serve as a
helpful, complementary approach to identify gaps in models
extracted from such scenarios. In Tables II through V, one
can observe the incompleteness of domain knowledge across
multiple authors. In Table II, out of 20 authors, only five
authors mention “budget,” while eight mention “appointments”
to see the apartment In Table IV, out of 16 authors, six authors
mention “water,” and four authors mention the “weather.”
The choice of why some authors bring up these topics when
answering the question, and others do not, may be explained
by anchoring, e.g., cost of an apartment can serve as an anchor
upon which the need to plan a budget follows, and availability,
where in a recent or memorable hiking experience was affected
by bad weather.

We believe that the extraction method using the MLM can
be used as a “bootstrap” technique in real world settings,
rather than a stand-alone tool supporting sentence completion.
In our opinion, MLMs cannot substitute human expertise,
however, this approach can be used to enhance an existing
domain model to check for missing, high-probability entities
or actions associated with domain elements described such
models. For instance, we may use MLMs to identify missing
domain model elements in a requirements artifact, such as
missing actors (e.g., owners or landlords in an apartment or
building scenario), and then proceed to ask subject matter
experts whether those missing elements require additional
elaboration.

In addition, the domain knowledge extracted from user-
authored scenarios can include information about actions and
desired qualities. We believe this information can be used to



reason over or construct process models that include steps
in a process, and desired qualities to be achieved in states
within the process. Process models are complementary to class
diagrams, which are topic of study in domain modeling [2],
[3], [14].

B. Typed Dependency Techniques

Typed dependencies alone could be enhanced with addi-
tional techniques. For example, “place” is the fourth most-
frequent noun and possibly also a hypernym, or more general
concept, of the noun apartment. In contrast, the noun “area”
may describe the geographic area around the apartment. Lex-
ical databases, such as WordNet [11], may be used to check
whether frequent nouns are semantically related using synsets.
In WordNet, the nouns “apartment” and “place” are indirectly
related via home#2 and home#1 synsets, respectively. This
indirection can be difficult to discover manually and automat-
ically, and may not be generalizable.

Similarly, the noun “one” is an English pronoun that can
refer to a previously mentioned noun, called anaphora. Fre-
quently used anaphora introduce ambiguity into the extracted
domain model, because the noun may refer to an apartment, a
budget, and so on. The pronoun can also be used to refer to the
author in third-person, but this would not likely appear in the
obj or obl dependency. To resolve anaphora, one can use co-
reference resolution to detect and disambiguate the anaphora
by linking the pronoun to the earlier noun to which it refers.

C. Seed Question Enhancement

In Section IV-2, we introduced a few seed question tem-
plates that can be used to elicit domain elements, such as
modifiers attached to a domain-specific noun. It is worth noting
that these example question templates can easily be altered
to elicit more domain elements. For instance, apart from the
examples shown to elicit modifiers and entities associated with
the domain-specific noun, we could also vary the seed question
to elicit other elements such as actors, actions, etc., by using
templates “I want to [MASK] in the apartment.”, “[MASK]
are in the apartment.”, and so on.

In Section IV-2, we introduce the possibility of reusing prior
query outputs as an input to the seed question template to yield
a new query to further elicit information on a related domain
concept. For instance, we examined the example of using the
modifier “spacious” as a seed question input to elicit the action
“renovated”, and querying with both inputs to elicit the actor
”owners”. It is noteworthy that this process can be repeated
until a domain model is formed to a level of satisfaction, and
that repetition of words across queries might strengthen their
relevance in the model. A potential future work direction is to
determine when and how that satisfaction level is reached.

D. The Effect of Using Intensifiers in Seed Questions

In Section V-B2, we presented results of using intensifiers
in the seed question templates. In an eyeball test of the three
templates, with no intensifier or the intensifier ”very” and
”extremely”, respectively, we observe that the third sentence

using the adjective ”extremely” was most likely to surface
value-oriented adjectives that others may or may not agree
with, whereas the first sentence surfaced less value-oriented
and more agreeable adjectives. This could mean that using
intensifiers would yield modifiers that are closer to user pref-
erences that can turn into soft goals or quality requirements,
enhancing the domain model constructed from this approach.

E. Domain-specific Masked Language Models

A challenge for generating the domain model from word
embeddings is whether the seed question templates can be
reused across domains. For instance, given the seed ques-
tion ”The apartment is [MASKED]”, we can change the
domain reusing the same seed question with a different noun
phrase, clinic, to yield the updated template: ”The clinic is
[MASKED].” Can large embeddings learnt by models, such
as BERT, adapt to domain-specific problems? In Section V-B,
we show the results of reusing seed question templates across
domains. These seed questions appear to adapt well to different
domains, but there is space for improvement, and it is not
guaranteed that they would adapt well to domains that are
more obscure and thus not be well learned by the Masked
Language Model. In such a situation, when we need to obtain
word embeddings for text data that are domain-specific, such
as in domains like legal, medicine, etc., we can still utilize
the Masked Language Model based on BERT. One way is to
treat this task as a downstream task to fine-tune BERT. By
continuing to train the pre-trained BERT model with some
of the domain-specific text data, we can produce a word-
embedding tuned to the specific domain [32]. Another way
is to train the BERT-based model from scratch on a domain-
specific corpus. This may result in better domain-specific
word embeddings, but requires much more training data and
computational power. Examples of using this approach include
SciBEERT [5], which was trained for scientific text, and
BioBERT [19], which was trained for medical text.

Moreover, when applied to less popular domains, the gen-
eration of the domain model from user-authored scenario
approach may not be very effective, as users of these domains
can be fewer, hence the authored scenarios obtained from
fewer users may yield less domain knowledge for domain
model generation. To address this limitation in the workplace,
one could replace Amazon Mechanical Turk workers with
employees to transfer the approach to an industrial setting,
because employees may generally hold more domain-specific
knowledge for systems they are developing. Although in-
dustrial settings may already possess domain models, these
domain models can be bootstrapped by the generation from
MLM approach, as this approach may enhance the model with
knowledge that human-beings, such as employees, may tend
to overlook, as discussed in Section VI-A.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined two approaches to extract do-
main models from a corpus and to extract domain models from
word embeddings using masked language models (MLM). The



first approach is based on typed dependencies, and the second
approach is based on prepared statement templates where two
or more slots in the templates are filled by seed knowledge,
such as a noun phrase, and a mask, which represents the
query to which the model provides a response. The highest
confidence responses in the MLM can be used to build out
the domain model. The data and code are available online
[38].

We envision three prospects for future work. First, while
domain models can be manually constructed using elicitation
and human subjects, a generalizable, automated approach
that depends on limited seed knowledge could support more
advanced, automated analyses of requirements. For example,
using MLMs to identify missing domain model elements in
a requirements artifact, such as missing actors (e.g., owners
or landlords in an apartment or building scenario). That said,
we do not believe MLMs can substitute for subject matter
expertise. Because the responses are statistically dependent
on large corpora, they are also more likely the most obvious
responses. In contrast, subject matter experts responses to
queries can include domain elements situated in word contexts
that are rare and infrequent. Second, the domain knowledge
extraction using the MLM approach has shown that using prior
inputs in the seed question templates can yield more domain
knowledge, and that process may be repeated until a domain
model is build to a level of satisfaction determined by the
domain analyst. A future work direction is to consider a more
scalable and reliable manner of measuring satisfaction, perhaps
by forming specific criteria or metrics to determine when that
satisfaction level is reached. For example, we may determine
that satisfaction level is reached when we stop seeing new
words being generated from MLMs, a concept called satu-
ration, or we may consider using model confidence scores
to try to determine when the satisfaction level is reached,
although confidence levels are subject to change based on
hyperparameters in the model and the underrepresentation of
the training data [13]. Third, MLMs and their responses may
be used to evaluate the readiness of an embedding to support
more advanced domain analysis. If seed questions and seed
questions with inputs, for example, do not yield rich responses,
then more fine-tuning with domain-specific corpora may be
needed to prepare the embedding for this domain. An advance
in this third direction would ideally include generalizable
metrics for evaluating embeddings for specific domains, which
are not dependent on domain-specific templates. We are also
interested in whether it is possible to find systematic ways to
produce seed question templates that are altered to adapt to
each new domain.
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