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Abstract—Open source projects are supported by contributors
located in different locations and time zones. Issues facili-
tate asynchronous communication among them, including bug
reports, solution suggestions, questions, answers or personal
communication. The discussion threads contain rich information
about the requirements and the system problems, yet they may be
lengthy and lack of structure; making it challenging to identify
and link the relevant parts to requirements. Previous work
addresses this problem by applying shallow machine learning
techniques to automatically classify sentences in a discussion.
We propose using the state-of-the-art transformer-based deep
language models for this task. The contribution of this paper
is three-fold. First, we create a benchmark for the community
to ensure standardized inputs for training and testing for this
problem. Second, we replicate the state-of-the-art and report the
results on this benchmark. Third, we significantly outperform
the state-of-the-art with our transformed-based classification
approach.

Index Terms—open-source systems, issue classification, re-
quirements tracing, transformer models, deep language models

I. INTRODUCTION

Requirements traceability is a critical task for software
development [1] and maintenance for it links requirements
with other artifacts such as models, code, and user feed-
back. Software projects benefits from the efforts towards
requirements traceability in multiple ways such as uncovering
the coverage of the requirements of a project, reducing the
task completion time and improving the quality of software
maintenance activities [2]. Such efforts also reduce the number
of flaws in software products [3].

Requirements traceability is also essential for open source
projects where several contributors located in different loca-
tions asynchronously work on the same project. The links
among the artifacts such as requirements, commits, code, and
issues help the existing and new contributors to keep track of
the status of the project without the need of the contributors’
synchronising over a face-to-face meeting or a call.

An issue in an open-source project may be a way of
asking questions, solving problems, reporting bugs, requesting
features, or working on ideas with the other collaborators [4],
[5]. As such, the communication over issues is a vital source
of information for open source projects [6]. Once an issue is
created, the members of the community read and comment on
it, creating a discussion under the issue. This discussion may
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be hard to follow for it may contain member questions, their
replies, questions that have already been answered, or off-topic
sub-discussions [7]. In a discussion thread the members may
greet each other and engage in social conversations, or they
may mention other issues and share their opinions on it which
complicates finding relevant information within the thread.

Issue-tracking systems (ITSs) list the issues, allow the users
label them such as open or closed, and present the discussion
under the issue. However, they do not extract rich information
available in the discussions. Arya et al. [7] identify 16 types
of information in open-source project discussions and build
a dataset of the most commented issues and their discussions
from three open-source projects. The dataset is annotated with
16 labels identified by the authors. Table I presents these
labels.

TABLE I
TYPES OF INFORMATION IN ISSUE DISCUSSIONS
IDENTIFIED BY ARYA ET AL. [7]

Information Type

Solution Discussion Contribution and Commitment

Usage Social Conversation

Expected Bug Reproduction

Motivation Potential New Issues and Requests
Workarounds Investigation and Exploration

Future Plan
Action on Issue
Content Management

Task Progress
Observed Bug Behaviour
Testing-Related

Previous work proposes using shallow machine learning and
natural language processing (NLP) techniques to automatically
classify issues for it is a time-consuming task when conducted
manually. Kallis et al. [8] treat the whole issue as a com-
putational unit and classify it using the issue title and the
text body. However, an issue may contain different types of
information as shown by Arya et al [7]. Instead of treating
an issue as a whole, they classify each sentence of an issue
and the discussion under it using shallow machine learning
techniques.

Transformer based language models are demonstrated to
outperform the more traditional techniques for text classifi-
cation [9]-[11]. This paper seeks to answer the following
research question:



RQ: Can transformer-based language models be used
to classify sentences from issue discussions?

To answer our research question we apply BERT [12],
DistilBERT [13] and RoBERTa [14] models, report the results,
and compare their performance on the dataset shared by Arya
et al. [7]. Our results indicate that transformer-based models
significantly outperform the best performing algorithm of Arya
et al. [7]. We provide our source code, and the benchmark
dataset in a public repository!. Our contributions are three-
fold.

Cl: To standardize training, validation, and test data we
split the dataset and share our splits as a benchmark
for future research.

C2:  We replicate the work of Arya et al. [7] and report
the performance on the new benchmark.

C3:  We apply and report the performance of transformer-
based language models.

The rest of the paper is organized as follows: Section II
briefly presents a theoretical background of transformed-based
deep language models. Section III describes the dataset, our
benchmark, and the replication study. Section IV explain our
transformer-based models, and their evaluation. Section V
discusses the results, Section VI reviews the main threats to
validity. Section VII examines the related work and Section
VIII concludes the paper.

II. BACKGROUND

BERT [12], stands for Bidirectional Encoder Represen-
tations from Transformers, is a language model that uses
transformer architecture [15] inside. Language models are
responsible for estimating text sequences, and BERT [12] has a
novel pretraining task called Masked Language Model. Trans-
formers outperform the state-of-the-art solutions for natural
language processing tasks and have had a significant impact
over the past few years.

Radford et al. [16] propose a concept for Transformer
Architecture to fine-tune language models. These models can
be used for any downstream NLP tasks after the pre-training
process. Several models have been proposed to improve BERT
[12] in terms of computational power, training time, and
prediction metrics. Several transformer-based models exist.
BERT is trained over 16 GB of data from books corpus
and Wikipedia, RoBERTa [14] is trained with an additional
144 GB of data comes from the news dataset and web text
corpus. DistilBERT [13] uses the same data to train but it
learns a distilled version of BERT which approximates it.
RoBERTa improves the performance by using more data to
train, DistilBERT improves the speed by using a different
method called BERT Distillation.

III. BENCHMARK AND REPLICATION
This section introduces the original dataset and our bench-
mark and reports the results of our replication study.

Uhttps://github.com/sevvalmehder/Classification-of-Issue-Discussions-in-
Open-Source-Projects
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Fig. 1. The label distribution of the dataset

A. Data

The original dataset [7] includes 4656 labeled sentences
annotated with 16 information types. It contains sentences
from three important AI libraries hosted on Github. The
authors selected the five most commented and closed issues,
and all sentences are extracted from these issues. According to
the analyses of Arya et al. [7] 293 samples from the dataset are
duplicates, and three minority classes have only 33 samples
in total which is less than 1% of the whole dataset Thus, the
authors ignored these 326 samples and 3 classes.

As a result of this process, the benchmark dataset contains
4330 sentences from 13 classes. The issue discussions contain
some code blocks, and URLs as external sources. In the
original dataset, these parts are replaced with CODE, and
URL.

Figure 1 presents the label distribution of the dataset which
is quite unbalanced. Three highest frequency labels are So-
lution Discussion, Social Conversation and Investigation
and Exploration. Three lowest frequency labels, which are
ignored by the original authors as mentioned above, are
Workarounds, Contribution and Commitment, and Action
on Issue.

B. Benchmark

In an attempt to mimic the benchmarks used in NLP tasks
by the NLP research community which provide the training
and test sets separately to standardize the training and testing
different approaches, we split the original dataset and share the
splits in our replication package. When splitting the dataset we
preserve the the label ratios among the annotated data.

The following steps are followed to split the dataset:

1) The X and y vectors are created from the dataset. X
represents the text content of the sentences, and the y
vector represents the labels of these contents.

2) ‘train_test_split’ function from sklearn [17] is used
to split these X and y vectors into X_train, y_train,
X_test and y_test vectors. ‘random_state‘ set as 42 and
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‘test_size‘ set as 0.2 that means 20% of the dataset is
spared as the test set. The y vector is given as ‘stratify*
parameter to preserve class distribution.

3) The X and y vectors belonging to the training and test
are concatenated. The test and training data are saved as
pickle? files as the last step.

TABLE I
FEATURES OF TEST AND TRAIN SETS

Feature Train set  Test set
Length of the longest sentence in terms of 2967 793
character count.

Average length of sentences in terms of 87 82
character count.

Length of the longest sentence in terms of 793 963
word count

Average length of sentences in terms of 14 13
word count

Number of unique words 9492 3491
The percentage of sentences including 0.16 0.20
CODE

The percentage of sentences including URL 0.028 0.017

Table II compares the training and test set according to
features focused on describing the dataset’s characteristics. We
use the length features in terms of character and word counts.
We also used the information of how many elements in the
sets contain CODE and URL to explore the dataset’s attributes.
This comparison shows that the benchmark dataset’s test and
train parts have similar features.

C. Replication

The original work has 12 experiments using different mod-
els, feature sets, class imbalance handling, and evaluation
methods. Logistic Regression and Random Forest classifiers
are the models of the experiments. The authors handle the
class imbalance problem by adjusting class weights and using
the SMOTE method [18]. The first feature set that they run
experiments with is the textual feature set, the second is
conversational features, and finally, they use both textual and
conversational features. They create two scenarios that differ
in evaluation manners. They use 5-fold cross-validation in the
first scenario and Leave-One-Group-Out cross-validation in
the second scenario. In the second scenario, they select 14
issue threads to train the classifier and leave out the one issue
for testing the model. They iterate this process 15 times.

Since our version of the classification problem focuses on
the textual features, we only replicate the best-performing
model on the textual feature set. The model that has higher
results is the Logistic Regression model with adjusted class
weights. Thus, once we create our benchmark, we run the
code of the Logistic Regression model provided by Arya et
al. [7]. The original pipeline includes the following steps:

1) Cleaning and preprocessing sentences
2) Transforming sentences to vectors with n-gram range

Zhttps://docs.python.org/3/library/pickle.html

3) Using these vectors as input to the Logistic regression
model

One important point is that the original authors use their
own custom tokenizer to perform tokenizing, lemmatization,
case folding, and punctuation removal operations. They also
identify mentions to GitHub users and replace them with
a special token named SCREEN_NAME at the tokenization
step. However, the benchmark dataset does not contain this
kind of special token. So we ignore this custom tokenizer
to create a similar setup between the original work and the
replicated one. The best performing model is trained using
bi-grams and 10 for the inverse regularization strength.

D. Replication Results

Table III compares the results of our replication and the
original values presented in [7]. The results we report as
original work belongs to Logistic Regression results for the
Leave-One-Group-Out cross-validation scenario, just as the
authors reported. The original precision, recall, and F1 scores
are the average scores of 15 iterations. And the results we
reported as replicated work belongs to the Logistic Regression
model, which is trained with the hold-out method over the
benchmark dataset. We follow the same steps except for the
validation method.

The difference between the original and replicated work is
because of the validation method of the original work, which
is Leave-One-Group-Out. The leave-One-Group-Out strategy
does not guarantee the class distributions of the training data
will be similar. Because of this situation, we observe either
comparable or improved F1 scores for the replication over
the original values. For some labels, the improvement is more
prominent, such as Solution Usage, Motivation, Potential New
Issues and Requests, and Expected Behavior. In contrast, for
other labels, the results are comparable such as Solution
Discussion, Social Conversation, and Contribution and Com-
mitment.

TABLE III
PERFORMANCE OF THE ORIGINAL STUDY AND OUR REPLICATION

Original Replicated  Original ~ Replicated ~ Original ~ Replicated
Label . . .
precision  precision recall recall Fl score  F1 score
Dotution 0.59 0.54 0.65 0.65 0.58 0.59
iscussion
z"c‘a] m 0.74 0.73 0.69 0.69 0.70 0.71
onversation
Investigation 047 043 024 0.51 031 047
and Exploration
Usage 0.57 0.44 0.08 0.46 0.12 0.45
Motivation 0.44 0.35 0.1 0.31 0.13 0.33
Bug 053 0.48 036 0.45 0.42 0.46
Reproduction
Potential New Issues 0.1 0.29 0.03 0.24 0.03 0.26
and Requests
Observed Bug 023 021 0.03 0.12 0.04 0.15
Behaviour
Task Progress 0.35 0.38 0.26 0.32 0.29 0.35
Expected 071 048 0.1 0.40 0.15 043
Behaviour
Workarounds 0.51 0.40 0.06 0.11 0.09 0.17
Contribution 0.1 0.56 031 0.29 0.37 0.38
and Commitment
Action on Issue 0.78 0.88 0.49 0.58 0.58 0.70




IV. CLASSIFICATION WITH DEEP LANGUAGE MODELS
A. Method

For our transformer-based approach, we focus on BERT
[12], RoBERTa [14] and DistilBERT [13]. We use the
pre-trained bert-base-uncased model for BERT, distilbert-
base-uncased model for DistilBERT, and roberta-base for
RoBERTa from Huggingface [19]. These are pretrained lan-
guage models that each one has different benefits in terms of
accuracy and computational cost.

Another important decision is selecting the optimizer. Opti-
mization algorithms are responsible for controlling the param-
eters such as learning rate and weight and reducing the losses
to provide more accurate results. We use AdamW [20] as our
optimizer. We perform the validation by randomly splitting the
training dataset into two: 85 of the sentences are used to train
the classifier, and the remaining 15% for testing it. We set the
batch size to one and trained over 40 epochs.

To handle the imbalanced data, the logistic regression model
uses class weights. We also assign weights to classes for
the BERT and variants using the PyTorch [21] library. The
class weights are inversely proportional to the number of class
elements.

A benchmark, as it is used in NLP, provides a perspective
to keep track of the progress in the related field. However,
it is not a realistic assumption that each class has the same
distribution for training and test sets. A different evaluation
setting is required to estimate how the model performs when
a new issue comes. Thus, we design two evaluation settings:
(1) Using the benchmark dataset and (2) Leave-One-Group-
Out cross-validation.

a) Evaluation Setting 1: We trained BERT, DistilBERT,
and RoBERTa using the hold-out method with the benchmark
dataset in this setting. We aim to observe the deep language
model’s performance over the benchmark dataset.

b) Evaluation Setting 2: We use all data, which is the
combined version of the training and test dataset in this setting.
We leave out one issue of the combined dataset from the
training process and use the excluded issue as a test set. We
train 15 RoBERTa models, iterating this process 15 times. This
method allows us to examine how the model will perform
when a new issue comes.

B. Results

We examine the performance of the deep language models
separately.
a) Evaluation Setting 1: Table IV presents the weighted
F1 scores belongs to Replicated Logistic Regression, BERT,
DistilBERT, and RoBERTa. The weighted F1 score is cal-
culated by accounting for each class F1 score as weighted
by the number of class samples. According to the overall
F1 scores, BERT variants outperform the Logistic Regression
model. Table V shows the precision, recall, and F1 scores
for each label by the Replicated Logistic Regression, BERT,
DistilBERT, and RoBERTa.
We conduct statistical testing to confirm that these classifiers
indeed have meaningfully different performances. We show

TABLE IV
THE WEIGHTED F1 SCORES OF TRAINED MODELS

BERT  DistilBERT RoBERTa
0.54 0.53 0.54

Logistic Regression
Weighted F1 score 0.51

the data are not normally distributed in Figure 1 and consider
this when selecting the statistical test. Since we examine the
performances of the group of three classifiers, we apply the
Friedman test [22] to determine whether these classifiers differ
statistically significantly. After that, we report the Wilcoxon
Sign Test [23] to make a pairwise comparison between two
classifiers.

We set our null hypothesis that "There is no model that
performs significantly different than others in the group.”. The
test results in a p-value for the Friedman Test [22] smaller
than 0.05 that rejects our null hypothesis. We apply pairwise
Wilcoxon [23] tests to determine the models that perform
significantly differently. Wilcoxon tests suggest that there is
a significant difference in the performance of the Logistic
Regression Model and all three transformer-based models.
The tests do not suggest a significant difference among the
transformer-based models themselves.

b) Evaluation Setting 2: : Table VI summarizes the F1
scores of 15 runs. We use only RoBERTa model for these
15 runs. Since some classes are not well represented when
we leave out one of the issues, the classes except Social
Conversation have zero F1 scores in at least one of the 15 runs.
The results are nearly suitable with the results of the trained
RoBERTa model over the benchmark dataset. For both cases,
the maximum score belongs to the Social Conversation class.
The Potential New Issues and Requests and the Observed Bug
Behaviour classes have the minimum scores.

V. DISCUSSION

Transformers have been significantly used for not only NLP
tasks but also the Requirements Engineering (RE) tasks. Yet,
the performance of transformer-based models reported in this
work is not as good as in other RE works using them [10],
[11], [24]. Mekala et al. [9] claim that transformer-based
models can achieve higher results on the small dataset. They
have two experiments with 1000 and 1242 samples which are
smaller than our benchmark dataset. However, we deal with a
multi-class problem with 13 classes while they have a binary
classification problem. Considering that some of the classes
we use have less than 100 samples, we interpret these results
as the consequence of the insufficient samples for each label.

Figure 2 presents the confusion matrix of the RoBERTa
model, which is trained over the benchmark dataset. According
to the matrix, the model tends to classify most sentences
as a social conversation. Our observation here is that, even
if a sentence contains, for example, a solution discussion,
the discussion messages may include a phrase that can be
considered a social conversation, making it challenging to label
some sentences. For instance, the sample sentence ~Would
greatly appreciate” is labeled as a Solution Discussion;



TABLE V
COMPARISON OF BERT [12], TWO VARIANTS [13], [14] AND THE LOGISTIC REGRESSION [7] IN TERMS OF PRECISION, RECALL AND F1 SCORE

Labels Replicated —  pppp DistIBERT RoBERTa
Logistic Regression
pr rec F1 pr rec F1 pr rec F1  pr rec F1
Solution Discussion 054 065 059 053 073 061 057 072 064 054 069 0.61
Expected Behaviour: 048 040 043 056 040 047 024 032 028 053 040 045
Usage 044 046 045 056 047 051 039 054 045 046 045 046
Social Conversation 073 069 071 080 081 08 080 074 077 080 0.82 081
Contribution and Commit- 0.56 029 038 058 041 048 0.67 035 046 060 035 044
ment
Bug Reproduction 048 045 046 050 045 047 042 041 041 045 051 048
Motivation 035 031 033 042 022 029 044 024 031 041 024 030
Potential New Issues and 029 024 026 038 026 031 033 028 031 034 024 0.28
Requests
Investigation and Explo- 043 051 047 041 037 039 048 033 039 044 037 040
ration
Workarounds 040 0.11 0.7 100 0.17 029 050 0.11 0.18 050 028 0.36
Observed Bug Behaviour 021 0.12 015 033 015 021 033 015 021 029 023 0.26
Task Progress 038 032 035 042 032 036 055 048 051 050 032 0.39
Action on Issue 0.88 058 070 0.80 067 073 070 058 064 082 075 0.78
TABLE VI In light of this information, we conclude that the model’s
PERFORMANCE OF THE performance is associated with the number of common words
LEAVE-ONE-GROUP-OUT CROSS VALIDATION. . .
they share. Some minority classes may be grouped together to
Label Max FI  Min FI  Avg F1 St Dev. improve the model’s performance if they share many common
Solution Discussion 0.68 0.00 047 018 words as part. of the future work. This reduces the 1mbal.ar.106
Social Conversation 0.88 0.57 0.74 0.08 problem, which poses a challenge for the model. Training
Investigation and Explo- 0.60 0.00 0.21 0.24 binary classifiers for each label using over or undersampling
ration :
Usage 0,80 0.00 . 022 may also further improve the results.
Motivation 0.50 0.00 0.10 0.15
Bug Reproduction 0.58 0.00 0.21 0.24
Potential New Issues and 0.22 0.00 0.06 0.08
Requests 20
Observed Bug Behaviour 0.60 0.00 0.14 0.19
Task Progress 0.86 0.00 0.36 0.18 Dij;‘:;;g; 8 18 5 2 5 5 7 4 3 5 6 0 s
Expected Behaviour 0.13 0.00 0.01 0.04 Bpected | 3 10 1 2 o0 o0 2 0 1 0o 0o o o
Workarounds 0.57 0.00 0.07 0.15 Behaviour i
Contribution and Commit- 0.67 0.00 0.29 0.23 el TR Y 2t 0000 e 150
ment Cuwsr;?‘i;‘ 17 o0 2 2 0 2 2 4 1 o0 2 1
Action on Issue 1.00 0.00 0.54 0.30 Contribution | 3 ;7 o 4 8 o o 1 o0 0 o0 ©0 o0

and Commitment

125

however, the trained RoOBERTa model confuses and predicts
a Social Conversation.

Figure 3 presents the matrix of common words. According
to the confusion and the common words matrices, the model
makes a mistake between two classes if they share many
common words. According to the confusion matrix, the model
confuses the Solution Discussion and Motivation classes,
they also share 885 common words. The model never fails
differentiating Solution Discussion and Action on Issue and
they share only 176 common words. Furthermore, the F1
scores are higher for Action on Issue even though it has the
fewest samples. The reason is that the maximum word count
that Action on Issue samples share with another class is 176.
But also, we suspect the model is over fitting.
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Fig. 2. Confusion matrix of RoOBERTa model trained over benchmark dataset
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VI. THREATS TO VALIDITY

External validity. External validity concerns the generality
of the results. The dataset we use is collected from three open-
source projects on artificial intelligence. As such we do not
claim generality and call the community to study transformer-
based models on other type of projects and domains.

Internal validity. We use a readily annotated dataset; there-
fore we do not reflect our bias to the annotation if there
exists any bias. When splitting the data, we make use of the
publicly available tools, and publicly share our code to prove
the authors do not intervene with the splits for training and
testing.

Construct validity. Our replication is not an exact replication
for we rely on the pre-trained tokenizers of the transformer-
based models and the original study uses its own custom
tokenizer that also preprocesses the data. This change in the
tokenization step may affect the replication results of logistic
regression.

Conclusion validity. To mitigate any threat to validity of
our interpretation of the results we perform statistical tests.
First, the Friedman Test indicates that there is a significantly
performing model among the models. Second the pairwise
Wilcoxon tests show that transformer-based models signifi-
cantly outperform the Logistic Regression Model.

VII. RELATED WORK

This work is closely related to previous studies concen-
trating on requirement traceability and the classification of
requirement-related texts.

Researchers use the issues classification method for different
objectives. The issues are used to determine software feature
requests [5]. They classify issues into three classes: requests,
clarifications, and solution proposals. Their technique can

reasonably detect whether the issue contains any software
feature request; however, their model cannot identify the exact
sentence that proposes a feature request. Kallis et al. [8] build
a tool to classify Github issues as bugs, enhancements, and
questions using fastText [25]. They train their model using
both the issue title and the body and evaluate the tool for over
30,000 GitHub issues. Again, this study can assign a class to
the whole issue and not perform classification at the sentence
level.

Most issue classification methods classify the whole issue
instead of classifying sentences in the issues [8], [26], [27].
They assign a label for the first title and body that starts the
issue discussion for an open issue. On the other hand, we
focused on extracting important information types from the
sentences in issue discussions.

The other related topic is the classification of requirement-
related texts. The literature has established that deep learning-
based approaches have significant performance in RE, just as
natural language processing in recent years. Dalpiaz et al.
[28] focused on the requirement documents to classify and
work on distinguishing between functional and non-functional
(quality) requirements from the PROMISE dataset. They build
a machine learning classifier using interpretable features such
as dependency types instead of the features that do not give
any semantical clue like n-grams or POS n-grams which
are popular for classification problems. After that Hey et al.
[10] proposed NoRBERT using the same dataset, PROMISE.
Their method of fine-tuning BERT to apply deep learning
methods for the poor generalizability problem outperforms
recent approaches using machine learning solutions.

In order to compare ML techniques with DL-based classi-
fication techniques made by Sainani et al. [11]. They com-
pare Support Vector Machines, Random Forest, Naive Bayes,
BiLSTM(Bidirectional Long Short-Term Memory), and BERT
to determine the types of the requirements from software
contracts. They trained the models over 20 contracts and used
multilabel classification techniques for their classification. As
a result, they prove that BERT produced better results for each
requirement type even if they have a lesser number of samples
in the dataset.

Furthermore Fischbach et al. [24] made an experiment
setup for automatic causality detection and compared different
models from rule-based methods to deep learning-based meth-
ods. Their pre-trained BERT [12] model with the dependency
types of the tokens, which they called BERTpgp gives a
higher F1 score and outperforms the Random Forest. Another
recent work that proves the success of the deep learning-based
models belongs to Mekala et al. [9]. They use the fine-tuning
BERT method to classify requirements in user feedback to
determine whether a part of the feedback is relevant from an
RE perspective with a small dataset. This study also proves
that BERT is reliable in determining the relevant portions of
user feedback.



VIII. CONCLUSIONS

This paper aims at applying state-of-the-art deep language
models to the issue discussion classification problem for open-
source projects. First, we create a benchmark from a state-of-
the-art dataset, replicate the approach of Arya et al. [7], and
train three BERT variants for this task. Our results indicate
that BERT variants outperform the shallow machine learning
method employed by the original study.

Future work includes balancing the dataset with more sam-
ples for the minority classes. Collecting and classifying issue
classifications from open-source projects in other domains
than artificial intelligence helps us test the generality of the
methods.
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