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Introduction



Applications
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• Requirements to support a shared understanding 
among stakeholders in (large) projects, e.g., 
software engineers and domain experts

• Requirements as contract with customers
• Requirements to support compliance with 

standards, e.g., traceability to tests
• Requirements to support quality assurance, e.g., 

system (security) testing
• Requirements to support change control
• Requirements to support product-line 

configuration



For many of these applications, 
there is little automated tool support. 
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Forms of NL Requirements
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• Natural language statements, complying or 
not with templates

• User stories, following various templates
• Use case specifications, possibly structured 

and restricted
• Mixing natural language and models, e.g., 

class and activity diagrams



The best form of requirements depends on 
context and targeted applications.
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Contextual Factors
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• No “right” way to express requirements

• Domain complexity and criticality
• Regulatory compliance, e.g., standards
• Project size, team distribution, and number of 

stakeholders
• Background of stakeholders and communication 

challenges
• Presence of product lines with multiple customers
• Importance of early contractual agreement 
• Frequency and consequences of changes in 

requirements



Observations
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• Natural language in requirements won’t go 
away.

• The cost of rigorous requirements 
engineering must be justified by clear 
automation benefits.

• Limited research given the many and varying 
industrial automation needs, in widely 
varying contexts.



Outline
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• Report on a variety of research projects
• Collaborations with industry
• Various objectives and applications
• Examples from automotive and satellite
• Lessons learned and reflections



Overview

NL Requirements

Well-formed, consistent, complete, information?

Automated Testing Product Configuration
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Extraction 
from

Documents? Change impact?

Other Artifacts



Mode of Collaboration

12

• Research driven by industry needs
• Realistic evaluations
• Combining research with innovation and technology transfer

Adapted from [Gorschek et al. 2006]

Problem 
Formulation

Problem 
Identification

State of the 
Art Review

Candidate 
Solution(s)

Initial 
Validation

Training

Realistic 
Validation

Industry Partners

Research Groups

1

2

3

4

5

7

Solution 
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Change Impact Analysis



Supporting Change
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• Requirements change frequently
• Changes have side-effects on other 

requirements, design decisions, test cases …
• How do we support such changes in ways 

that scale to hundreds of requirements or 
more?

• Automated impact analysis



Inter-Requirements
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Inter-Requirements
Change Impact Analysis



Approach
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• Hundreds of requirements
• No traceability
• We propose an approach based on: (1) Natural 

Language Processing, (2) Phrase syntactic 
and semantic similarity measures



Example

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk. 

17



Change

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.

18



Challenge #1 
Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.

19



Challenge #2 
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.

20



• R1: The mission operation controller shall transmit satellite status reports to the user help desk
document repository. 

• R2: The satellite management system shall provide users with the ability to transfer 
maintenance and service plans to the user help desk. 

• R3: The mission operation controller shall transmit any detected anomalies with the user help 
desk.

Challenge #2 
Change Rationale

21

Possible Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission 
operation controller” and “user help desk” (R3)
3: We no longer want to “transmit satellite status 
reports” to “user help desk” but instead to “user 
document repository” (only R1)

Determine conditions under which change 
should propagate



Solution Characteristics
• Account for the phrasal structure of requirements

The mission operation controller shall transmit satellite status 
reports to the user help desk document repository.

user help desk, Deleted
user document repository, Added 

• Account for change rationale expressed by user (propagation condition)

• Consider semantically-related phrases that are not exact matches and 
close syntactic variations across requirements: quantitative matching of 
condition

22



Narcia

https://sites.google.com/site/svvnarcia/



Evaluation
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158 Requirements
9 change scenrios

72 Requirements
5 Change 
Scenarios



“touristic attraction”
is a

“point of interest”
Reason: 

Lack of a Domain Model

1 impacted requirement missed 
out of a total of 106 impacted 

requirements.

Effectiveness of Our Approach
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Requirements to Design
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Requirements-to-Design
Change Impact Analysis



Motivations

• Rigorous change management required by many standards 
and customers in safety critical systems, and embedded 
systems in general in many industry sectors

• Impact of requirements changes on design decisions

• Complete and precise design impact set

• SysML commonly used as embedded and cyber-physical 
system design representation 

27



Requirements Diagram
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Diagnostics Manager

<<Decision>>
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Over-Temp detected?
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Error = 1
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Compute Impacted Elements
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Structural 
Analysis

Behavioural
Analysis
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Change to R11: Change over temperature detection level to 147 C 
from 110 C.
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Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

input
from B2

output
to B5

output
to B4



:Over-Temperature 
Monitor

:Diagnostics 
Manager

:Diagnostics and 
Status Signal 
Generation

:Digital to Analog 
Converter

:DC Motor 
Controller:Temperature 

Processor

<<requirement>>
Over-Temperature 

Detection
(R11)

<<requirement>>
Operational 

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram



Rank Elements
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Natural 
Language 

Processing
Analysis 

Change to R11: Change 
over temperature detection 
level to 147 C from 110 C.

B2, B3, B4, B6

B2
B6
B3
B4

Ranked 
according to 
likelihood of 

impact



Change Statements

• Informal inputs from systems engineers regarding impact of 
changes

• Example: “Temperature lookup tables and voltage converters 
need to be adjusted”

39



Natural Language Processing
• Compute similarity scores (syntactic and semantic) between 

model elements labels and change statements 

• Experimented with pairwise combinations of syntactic and 
semantic measures

• Sort the design elements obtained after structural and 
behavioral analysis based on the similarity scores

• Engineers inspect the sorted lists to identify impacted 
elements

40



Identifying a Subset to Inspect
• Pick the last significant peak in delta similarity between two 

successive elements

• Point beyond which the similarity scores can no longer adequately 
tell apart the elements
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Figure 13: Ranked similarity scores and delta chart
for an example change scenario from CP. The delta
chart is used for computing the cuto↵ (r).

and i�1. For easier understanding, in Figure 13, we further
show the ranked similarity scores on the top of the delta
chart. These similarity scores were computed using Soft-
TFIDF (syntactic measure) and JCN (semantic measure).
As described in Section 2.3, the label of each EIS element
e is compared against all keyphrases in the change state-
ment using both SoftTFIDF and JCN. The maximum value
obtained from all these comparisons is assigned to e as its
similarity score. The chart on the top of Figure 13 plots the
EIS elements in descending order of the similarity scores.

For the cuto↵, we pick the point on the X-axis after which
there are no significant peaks in the delta chart. Intuitively,
the cuto↵ is the point beyond which the similarity scores can
no longer adequately tell apart the elements in terms of be-
ing impacted. What is a significant peak is relative. Based
on our experiments, a peak is significant if it is larger than
one-tenth of the highest peak in the delta chart, denoted
h
max

in Figure 13. The only exception is the peak caused
by zeroing out similarity scores smaller than 0.05 (see Sec-
tion 2.3). This peak, if it exists, is always the last one and
hence denoted h

last

. Since h
last

is artificial in the sense that
it is caused by zeroing out negligible similarity values, we
ignore h

last

when deciding about the cuto↵.
More precisely, we define the cuto↵ r to be at the end of

the right slope of the last significant peak (excluding h
last

).
In the example of Figure 13, h

max

= 0.26. Hence, r is at
the end of the last peak with a height > h

max

/10 = 0.026.
We recommend that engineers should inspect the EIS ele-
ments up to the cuto↵ and no further. In the example of
Figure 13, the cuto↵ is at 49% of the ranked list. We note
that the cuto↵ can be computed automatically and with-
out user involvement. Therefore, the delta charts and their
interpretation are transparent to the users of our approach.
In summary, for each change scenario, we automatically

recommend, through the analysis of the corresponding delta
chart as explained above, the fraction of the ranked EIS
that the engineers should manually inspect for identifying
actually-impacted elements.
RQ4. (E↵ectiveness) To answer RQ4, we report the re-
sults of applying the best similarity measure alternatives
from RQ2 for ranking the EISs computed by the algorithm of
Figure 8 (i.e., combined structural and behavioral analysis),
and then considering only the ranked EIS fractions recom-
mended by the guidelines of RQ3. Note that in this RQ, by
EIS we mean the fraction obtained after applying the guide-
lines of RQ3. In Figure 14, we show for our 16 changes the
size and precision distributions of the recommended EISs.
These distributions are provided separately for the best simi-
larity alternatives from RQ2, i.e., SoftTFIDF combined with
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Figure 14: Size and precision of EISs that result
from the application of the guidelines of RQ3 to the
EISs computed by the algorithm of Figure 8.

RES (denoted Soft.RES) and SoftTFIDF combined with
JCN (denoted Soft.JCN).
The average EIS size is 30.2 for Soft.RES and 18.5 for

Soft.JCN. The average precision for Soft.RES and Soft.JCN
are 19.5% and 29.4% respectively. As for recall, Soft.RES
yields a recall of 100% for all 16 changes, while Soft.JCN
misses one element for one change. That is, using Soft.JCN,
we have a recall of 100% for 15 changes, and a recall of 85%
for one change (i.e., an average recall of 99%). The results
clearly show that Soft.JCN yields better overall accuracy.
In summary, after applying our best NLP-based similarity

measure, Soft.JCN, the average precision of our analysis in-
creases to 29.4% compared to 16% obtained by the combined
behavioral and structural analysis (discussed in RQ1). The
average recall reduces to 99% compared to 100% obtained
by the combined analysis. Finally, using NLP, the average
number of elements to be inspected by the engineers reduces
to 18.5 (just 4.8% of the entire design model) compared to
38 (9.7% of the design model) before applying NLP.
RQ5. (Execution Time) The execution time for both
steps of our approach, i.e., computing the EISs and ranking
the EISs, was in the order of seconds for the 16 changes.
Given the small execution times, we expect our approach to
scale to larger systems. Execution times were measured on
a laptop with a 2.3 GHz CPU and 8GB of memory.

Validity considerations and threats. Internal and ex-
ternal validity are the most relevant dimensions of validity
for our case study. With regard to internal validity, an im-
portant consideration is that the change statements must
represent the understanding of the engineers about a change
before the engineers have determined the impact of that
change; otherwise, the engineers may learn from the anal-
ysis they have performed and provide more precise change
statements than when they have not examined the design
yet. If this occurs, the accuracy results would not faithfully
represent what one can achieve in a non-evaluation setting.
In our case study, the change statements were pre-existing
and written at the time that the change requests had been
filed, i.e., before the impact of the changes had been exam-
ined. The engineers in our case study were therefore required
only to inspect the design and provide the actual impact sets
(gold standard). Consequently, learning is not a significant
threat to internal validity. A potential threat to internal va-
lidity is that one of the engineers involved in our case study
is a co-author. To minimize potential bias, the engineers
involved neither used our tool nor saw the results generated
by the tool until they had specified the actual impact sets.
With regard to external validity, while our case study is in-



Overview
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Evaluation
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370 elements
16 change scenarios
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Effectiveness of Our Approach
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Effectiveness of Our Approach

Structural Behavioural NLP

1 impacted element missed out of 
a total of 81 impacted elements.
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Extracting Domain Knowledge



Domain Knowledge
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• All requirements depend, more or less 
explicitly, on domain knowledge

• Domain-specific concepts and terminology
• In practice: Not always consistent among all 

stakeholders
• Software engineers often have a superficial 

understanding of the application domain they 
target

• Extracting domain knowledge from 
requirements: Glossary, domain model …



Domain Models
A domain model is a representation of conceptual entities or 

real-world objects in a domain of interest

49

• Glossary
• Constraints



Motivation
• Representation of important domain concepts and their relations

• Facilitate communication between stakeholders from different 
backgrounds

• Help identify inconsistencies in terminology, etc.

• Helps assess completeness of requirements

• In practice, domain models are not preceding the elicitation and writing of 
requirements

50



Context
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Requirements 
Analysts

NL Requirements 
Document
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Class B

Class C

Class D

1 *

Relation

Domain 
Model

Build Domain 
Model

Specify 
Requirements



Problem Definition

• Manually building domain models is laborious 

• Automated support is required for building domain models

52



State of the Art

• Multiple approaches exist for extracting domain models or 
similar variants from requirements using extraction rules

• Majority assume specific structure, e.g., restricted NL

• Extraction of direct relations only but not indirect ones

• Limited empirical results on industrial requirements

76



Approach
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Approach
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Grammatical Dependencies
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The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize



Lift Dependencies to Semantic Units
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The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize

System 
Operator

Simulator 
Configuration

initalize

nsubj dobj



Approach
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Link Paths – Indirect Relations
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The simulator shall send log messages to the 
database via the monitoring interface.

Simulator Log Messagesend

Simulator Databasesend log message
to

Simulator Monitoring 
Interface

send log message
to database via



How useful is our approach?

50 Requirements
213 Relations

• Interview survey with 
experts

• Correctness and Relevance 
of each relation

• Missing relations in each 
requirement

83



Relevance: 37% (avg.)

Correctness: 88% (avg.)

Results

Missed: 10% (avg.)

Breakdown of the 
remaining 63%

12% are incorrect
51% are correct but 

superfluous

Incorrectness largely 
explained by NLP 

errors
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Statistics for Superfluousness

69% 

20% 

11% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

TOO	DETAILED

TOO	UNSPECIFIC

TRIVIAL	KNOWLEDGE

Evidence that NL requirements 
contain finer-grained information 

than what one normally captures in a 
domain model
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Can we improve the relevance of 
model extraction results?
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Active Learning

• Definition: Machine learning paradigm in which a learning 
technique interactively requests inputs from an external 
source in order to improve the accuracy of the machine 
learning model.

• Application: We process analysts’ feedback, and 
dynamically apply the logic gleaned from the feedback for 
reducing superfluous information. 
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Active Learning Feedback Loop

Pick relation(s) 
to inspect

Inspect 
relation(s)

Decide about 
relevance

Classification 
Model

labeled 
relations

Recommendations

65



Example Features (1/2)

Label-independent (Never updated):

• Type of the relation: Association, Aggregation, 
Generalization

• The extraction rule that produced the relation

• Number of tokens in the relation’s end points (concepts)
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Example Features (2/2)

Label-dependent (Updated with new relations):

• Number of relevant relations (in the training set) extracted 
from the same requirement as the given relation

• Number of relevant relations in the training set that share 
one end concept with the given relation

• Number of relevant relations in the training set that share 
both end concept with a given relation

67



Effectiveness of Detecting 
Superfluous Relations

• 96% of the recommendations made are correct

• The approach is unlikely to throw the analyst off-course.

• 45% of the superfluous relations are automatically marked

• Potentially significant savings

• We do not need a large seed training set: 30-40 relations

68
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Requirements-Driven Testing



Traceability
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• In many domains, various types of traceability 
are required

• For example, in automotive (ISO 26262), 
traceability between requirements and system 
tests: requirements-driven testing

• Many requirements, many tests, therefore 
many traces …

• Automation is required



Context

International Electronics 
& Engineering (IEE)

IEE develops real-time embedded systems:
• Automotive safety sensing systems
• Automotive comfort & convenience systems, 

e.g., Smart Trunk Opener

71



Objectives
• Support generation test cases from requirements

• Capture and create traceability information between test 
cases and requirements

• Requirements are captured through use cases

• Use cases are used to communicate with customers and the 
system test team

• Complete and precise behavioral models are not an option: 
too difficult and expensive (no model-based testing)
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Strategy

• Analyzable use case specifications

• Automatically extract test model from the use case 
specifications using Natural Language Processing

• Minimize modeling, domain modeling only

• No behavioral modeling
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Errors.size() == 0
Status != null

t > 0 && t < 50

Constraints

Domain Model Test Cases

Test Scenarios 
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THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDUse Cases

Evaluate
Consistency

UMTG



• RUCM is based on a (1) template, (2) restriction rules, 
and (3) specific keywords constraining the use of 
natural language in use case specifications 

• RUCM reduces ambiguity and facilitates automated 
analysis of use cases

• Conformance is supported by a tool based on NLP

Restricted Use Case Modeling: 
RUCM

75



RUCM
Use Case Name: Identify Occupancy Status
Actors: AirbagControlUnit
Precondition: The system has been initialized
. . .

Basic Flow
1. The seat SENDS occupancy status TO the system. 
2. INCLUDE USE CASE Classify occupancy status. 
3. The system VALIDATES THAT the occupant class for airbag control is valid. 
4. The system SENDS the occupant class for airbag control TO AirbagControlUnit. 

Specific Alternative Flow
RFS 3
1. IF the occupant class for airbag control is not valid THEN
2. The system SENDS the previous occupant class for airbag control TO …

Postcondition: The occupant class for airbag control has been sent. 

Postcondition: The previous occupant class for airbag control has been sent.

[Yue et al. TOSEM’13]



THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID

Identify Constraints
4

Constraint descriptions
Errors.size() == 0
Status != null

t > 0 && t < 50

Generate
Scenarios and 

Inputs

6

Elicit Use Cases
1

Missing Entities

Specify Constraints
5

OCL constraints

Model the Domain
2

Evaluate
Consistency

3 Domain ModelRUCM
Use Cases

Generate
Test Cases

7

Test Cases
Object 

Diagrams 
Test 

Scenarios Mapping Table



Elicit Use Cases
1

Model the Domain
2

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDRUCM

Use Cases

Generate
Scenarios and 

Inputs

6

ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID

Identify Constraints
4

Constraint descriptions

Evaluate
Consistency

3
Domain Model

Based on Natural
Language Processing
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Errors.size() == 0
Status != null

t > 0 && t < 50

Specify Constraints
5

OCL constraints
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Basic Flow

1. The seat SENDS occupancy status TO the system. 

2. INCLUDE USE CASE Classify occupancy status. 

3. The system VALIDATES THAT

the occupant class for airbag control is valid and 

the occupant class for seat belt reminder is valid. 

4. The system SENDS the occupant class for airbag control TO
AirbagControlUnit. 

5. The system SENDS the occupant class for seat belt reminder TO
SeatBeltControlUnit. 

6. The System Waits for next execution cycle.

Postcondition: The occupant class for airbag control and the 
occupant class for seat belt reminder have been sent. 

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

OUTPUT STEP

OUTPUT STEP

INTERNAL STEP

POSTCONDITION

DOMAIN ENTITY

CONSTRAINT

CONSTRAINT

DOMAIN ENTITY

DOMAIN ENTITY



UseCaseStart

Input

Include

Condition

Output

Exit

Condition

Exit Output

Exit

OccupancyStatus
DomainEntity

Condition

“no error has been detected”

OCL Constraint
Error.allInstances()
->forAll( i | i.isDetected = false) 

“the occupant class for airbag 
control was derived.”

…
DomainEntity

…
DomainEntity

OCL Constraint
BodySenseSystem.allInstances() → forAll( b | 

b.OccupantClassForAirbag = Child
OR b.OccupantClassForAirbag = Adult )

OCL Constraint
…

Constraint solving: UML2Alloy



Evaluate Model Consistency
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Occupant Class for Airbag Control

Occupant Class for Seat Belt Reminder

Domain Entities

AirbagControl

System

Sensor

OccupantStatus

- OccupantClassForAirbagControl
- OccupantClassForSeatBeltReminder

Airbag Control Classification Filter Sensor

ClassificationFilter

Tagged Use Case

1
1

1
1

1
1

1

1..*

1 1
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https://sites.google.com/site/umtgTestGen/

Toolset integrated with IBM 
DOORS and Rhapsody



Case Study
• BodySense, embedded system for detecting occupancy 

status in a car

• Evaluation:

• Cost of additional modelling (Constraints)

• Effectiveness in terms of covered scenarios 
compared to current practice at IEE

• Keep in mind changes and repeated testing
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Costs of Additional Modeling
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Use Case Steps Use Case
Flows

OCL
Constraints

UC1 50 8 9
UC2 44 13 7
UC3 35 8 8
UC4 59 11 12
UC5 30 8 5
UC6 25 6 12

5 to 10 minutes to write each constraints 
=>  A maximum of 10 hours in total



Effectiveness: scenarios covered
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0
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UC1 UC2 UC3 UC4 UC5 UC6

Scenarios Covered By Engineer Scenarios Covered By UMTG

100%

100%

100%

100% 100%
100%

81%

77%
100%

86%

50% 67%

It is hard for engineers to capture 
all the possible scenarios
involving error conditions.



Generating OCL Constraints
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• Constraints may be a challenge in practice
• NLP: Semantic Role Labeling
• Determine the role of words in a sentence 

(e.g., affected actor)
• Match words with corresponding concepts in 

the domain model
• Generate an OCL formula based on patterns



Semantic Role Labeling (SRL)
“no error has been detected”

Error.allInstances()->forAll( i | i.isDetected = false) 
A1

“The system detects temperature errors

TemperatureError.allInstances()->forAll( i | i.isDetected = true) 

A1

A1A0

A1: actor that is affected by the 
activity described in a sentence

A0: actor that performs 
an activity

A1 verb

verb

verb

verb



Empirical Evaluation

• Case study: BodySense, embedded system for detecting 
occupancy status in a car

• Evaluation:

• Automatically generate the OCL constraints required 
to automatically derive executable test cases

• Automatically generate executable test cases
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OCL generation: Precision and Recall
• 88 OCL constraints to be generated 

• OCLGen generates 69 constraints

• 66 correct, only 3 incorrect 

• Very high precision

• High Recall
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# Correctly generated constraints 
# Generated constraints

=precision = =  0.9766
69

# Correctly generated constraints 
# Constraints to be generated

=recall = =  0.7566
88



Results: Limiting Factors

• Imprecise specifications
• “The system VALIDATES THAT the temperature is valid“

• Inconsistent terminology
• “The system VALIDATES THAT the occupancy status is valid“

BodySense.allInstances()->forAll( i | i.temperature < 200 )

BodySense.allInstances()->forAll( i | i.occupancyStatus <> Empty )
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Misuse
Case

Specifications

Security 
Use Case

Specifications

Security
Functional

Testing

Security
Vulnerability

Testing

Automated Generation of 
Executable Test Cases

Validating whether the 
specified security 

properties are 
implemented correctly

Addressing the 
identification of 

system 
vulnerabilities

Benefits of automated generation:

• Automated generation reduces 
development costs 

• Ensures coverage and traceability
• Compliance with standards and 

regulations

Security Testing



Summary

NL Requirements

Well-formed, consistent, complete, information?

Automated Testing Product Configuration
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Extraction 
from

Documents? Change impact?

Other Artifacts



The Complexity of our World
• Many applications, diversity of contexts, and types of NL 

requirements 

• Variety of very different working assumptions

• Form of requirements, e.g., RUCM

• Change information

• Modeling practice, e.g., domain models

• Scale, e.g., embedded automotive versus satellite ground 
control systems



The Road Ahead
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• Practical solutions are possible based on 
combining advanced NLP and (often) machine 
learning.

• We must account for practicality and 
scalability at the outset, not as an 
afterthought.

• We need more (reported) industrial 
experiences, as working assumptions play a 
key role.
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