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Introduction



Applications

Requirements to support a shared understanding
among stakeholders in (large) projects, e.g.,
software engineers and domain experts
Requirements as contract with customers
Requirements to support compliance with
standards, e.g., traceability to tests
Requirements to support quality assurance, e.g.,
system (security) testing

Requirements to support change control
Requirements to support product-line
configuration
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For many of these applications,
there is little automated tool support.



Forms of NL Requirements

Natural language statements, complying or
not with templates

User stories, following various templates
Use case specifications, possibly structured
and restricted

Mixing natural language and models, e.g.,
class and activity diagrams



The best form of requirements depends on
context and targeted applications.



Contextual Factors

No “right” way to express requirements

Domain complexity and criticality

Regulatory compliance, e.g., standards

Project size, team distribution, and number of
stakeholders

Background of stakeholders and communication
challenges

Presence of product lines with multiple customers
Importance of early contractual agreement
Frequency and consequences of changes in
requirements



Observations

» Natural language in requirements won’t go
away.

* The cost of rigorous requirements
engineering must be justified by clear
automation benefits.

 Limited research given the many and varying
industrial automation needs, in widely
varying contexts.



Outline

Report on a variety of research projects
Collaborations with industry

Various objectives and applications
Examples from automotive and satellite
Lessons learned and reflections
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Overview

Well-formed, consistent, complete, information?

Extraction
from NL Requirements MRS
Documents? Change impact?

Other Artifacts

Automated Testing Product Configuration
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- Research driven by industry needs
- Realistic evaluations

Mode of Gollaboration

- Combining research with innovation and technology transfer

1
Problem
Identification
2

Problem

Formulation

3 State of the
Art Review

Research Groups

Initial

Validation
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Change Impact Analysis



Supporting Change

Requirements change frequently
Changes have side-effects on other

requirements, design decisions, test cases ...

How do we support such changes in ways
that scale to hundreds of requirements or

more?
Automated impact analysis
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Inter-Requirements

Inter-Requirements
Change Impact Analysis
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Approach

Hundreds of requirements

No traceability
We propose an approach based on: (1) Natural

Language Processing, (2) Phrase syntactic
and semantic similarity measures
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Example

e R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.
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Change

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.
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Challenge #1
Capture Changes Precisely

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.
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Challenge #2
Capture Change Rationale

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.
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Challenge #2
Change Rationale

e R1: The mission operation controller shall transmit satellite status reports to the user help-desk
document repository.

e R2: The satellite management system shall provide users with the ability to transfer
maintenance and service plans to the user help desk.

e R3: The mission operation controller shall transmit any detected anomalies with the user help

desk.

Possible Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission
operation controller” and “user help desk” (R3)
3: We no longer want to “transmit satellite status
reports” to “user help desk” but instead to “user
document repository” (only R1)

Determine conditions under which change
should propagate




Solution Characteristics

e Account for the phrasal structure of requirements

The mission operation controller shall transmit satellite status
reports to the user hrelp-desk document repository.

user help desk,

user document repository,

e Account for change rationale expressed by user (propagation condition)

o Consider semantically-related phrases that are not exact matches and
close syntactic variations across requirements: quantitative matching of
condition
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Evaluation
SES”

your satellite company

72 Requirements
5 Change
Scenarios

158 Requirements
9 change scenrios




Effectiveness of Our Approach

50%

e 45%

o2 1 impacted requirement missed

out of a total of 106 impacted
20% requirements.

1% - 7% 6% - 8%

10%

Futile Inspection Effort
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Requirements to Design

g

Requirements-to-Design

Change Impact Analysis
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Motivations

 Rigorous change management required by many standards
and customers in safety critical systems, and embedded
systems in general in many industry sectors

o Impact of requirements changes on design decisions
o Complete and precise design impact set

e SysML commonly used as embedded and cyber-physical
system design representation
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Requirements Diagram

«requirement»
Temperature Diagnostics

text = "The CP controller shall
provide temperature diagnostics."

id="R1"
«requirement» «requirement»
Over-Temperature Detection Operational Temperature Range
text = "The CP controller shall text = "The CP controller shall be
detect temperatures exceeding | |able to measure temperatures
110 °C." between -20 °C and 120 °C."
id ="R11" id="R12"
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Compute Impacted Elements

Structural Behavioural

Analysis Analysis




<<satisfy>>

B2

:0ver-Temperature
Monitor >

14

<<requirement>>
Over-Temperature
Detection
(R11)

Structural Diagram

BS

:Diagnostics and

> Status Signal

B3

:Diagnostics

B1

:Temperature

= Manager

Processor

<<satisfy>>

<<requirement>>
Operational
Temperature Range
(R12)

Generation
B4
51 :DC Motor
Controller
B6

:Digital to Analog

Converter




Structural Diagram

Change to R11: Change over temperature detection level to 147 C
from 110 C.
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Behavioural Diagram
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Rank Elements

Change to R11: Change

over temperature detection

level to 147 C from 110 C. Natural [ B2
Language B6
Processing B3
B2, B3, B4, B6 Analysis B4
Ranked
according to
likelihood of
impact
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Change Statements

o Informal inputs from systems engineers regarding impact of
changes

o Example: “Temperature lookup tables and voltage converters
need to be adjusted”
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Natural Language Processing

o Compute similarity scores (syntactic and semantic) between
model elements labels and change statements

e Experimented with pairwise combinations of syntactic and
semantic measures

o Sort the design elements obtained after structural and
behavioral analysis based on the similarity scores

» Engineers inspect the sorted lists to identify impacted
elements
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|ldentifying a Subset to Inspect

e Pick the last significant peak in delta similarity between two
successive elements

 Point beyond which the similarity scores can no longer adequately
tell apart the elements

0.8
0.6
0.4
0.2
0.0

hmax = 0.26

Similarity score

0.2

0.1 Niast

Delta

hmax/10 = 0.026

0.0 :
0 25 r=49% "'59 75 100

% of elements inspected in the sorted list



Requirements Changes and
Informal Change Statements
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Evaluation

DELPHI

Innovation for the Real World

370 elements
16 change scenarios




Effectiveness of Our Approach

Futile Inspection Effort (%)
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Effectiveness of Our Approach
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Effectiveness of Our Approach
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1 1 impacted element missed out of
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Extracting Domain Knowledge



Domain Knowledge

All requirements depend, more or less
explicitly, on domain knowledge
Domain-specific concepts and terminology

In practice: Not always consistent among all
stakeholders

Software engineers often have a superficial
understanding of the application domain they
target

Extracting domain knowledge from
requirements: Glossary, domain model ...
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Domain Models

A domain model is a representation of conceptual entities or
real-world objects in a domain of interest

Satellite

PN

sateI“te sate“lte transfers user ™ Control Centre
Ground Station S&T Station |1 reavesiso 1) o eon

RN

Satellite Satellite * (Glossary
Ground Station - A| Ground Station - B Constraints
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Motivation

e Representation of important domain concepts and their relations

e Facilitate communication between stakeholders from different
backgrounds

 Help identify inconsistencies in terminology, etc.
e Helps assess completeness of requirements
e In practice, domain models are not preceding the elicitation and writing of

requirements

a0



Context

Requirements
Analysts

NL Requirements
Requirements Document

I / Relation
Build Domain ET 1 ?
Model

Domain
Model
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Problem Definition

e Manually building domain models is laborious

o Automated support is required for building domain models
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State of the Art

» Multiple approaches exist for extracting domain models or
similar variants from requirements using extraction rules

o Majority assume specific structure, e.g., restricted NL
o Extraction of direct relations only but not indirect ones

 Limited empirical results on industrial requirements
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Approach

Domain
Model

NL
Requirements

+

Process Lift
Requirements Dependencies to
Statements Semantic Units

Construct
Domain Model

Phrase-level
Dependencies

Phrasal Dependencies
Structure

Extraction
54 Rules




Approach

NL
Requirements

+

Process
Requirements
Statements

Phrasal Dependencies
Structure

Construct

Domain Model

Phrase-level
Dependencies

Extraction

25
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Grammatical Dependencies

il Wi

The system operator shall initialize the simulator configuration.

initalize >

Operator Configuration
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Lift Dependencies to Semantic Units

o R

The system operator shall initialize the simulator configuration

-

Operator ol Configuration

System initalize P> Simulator
Operator Configuration




NL
Requirements

+

Process
Requirements
Statements

Approach

Dependencies to

Lift

Semantic Units

Phrasal
Structure

Dependencies

Domain
Model

Phrase-level
Dependencies

28
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Link Paths — Indirect Relations

The simulator shall send log messages to the
database via the monitoring interface.

send >

Simulator Log Message

send log message p>

Database
fo

Simulator

send log message Monitoring
to database via Interface

Simulator
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How useful is our approach?

e Interview survey with
experts

e Correctness and Relevance
of each relation

» Missing relations in each
20 Requirements :
213 Relations requirement
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Results

Incorrectness largely

explained by NLP
Correctness: 88% (avg.) errors
Breakdown of the
Relevance: 37% (avg.) remaining 63%
] 12% are incorrect
Missed: 10% (avg') 51% are correct but

superfluous
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Statistics for Superfluousness

IIIIIIIIIIIIIIII

Evidence that NL requirements
contain finer-grained information
than what one normally captures in a
domain model

OOOOOOOOOOOOO

0% 10% 20% 30% 40% 50% 60% 70% 80%

62



Can we improve the relevance of
model extraction results?
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Active Learning

e Definition: Machine learning paradigm in which a learning
technique interactively requests inputs from an external
source in order to improve the accuracy of the machine
learning model.

 Application: We process analysts’ feedback, and
dynamically apply the logic gleaned from the feedback for
reducing superfluous information.
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Active Learning Feedback Loop

L L D | e e e T
' 4

4
\~--"

. | Pick relation(s) Inspect Decide about
' . P . —>
\ to inspect relation(s) relevance
labeled
relations
Recommendations
\
Classification
Model
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Example Features (1/2)

Label-independent (Never updated):

 Type of the relation: Association, Aggregation,
Generalization

e The extraction rule that produced the relation

o Number of tokens in the relation’s end points (concepts)
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Example Features (2/2)

Label-dependent (Updated with new relations):

e Number of relevant relations (in the training set) extracted
from the same requirement as the given relation

 Number of relevant relations in the training set that share
one end concept with the given relation

e Number of relevant relations in the training set that share
both end concept with a given relation
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Effectiveness of Detecting
Superfluous Relations

* 96% of the recommendations made are correct
e The approach is unlikely to throw the analyst off-course.
» 45% of the superfluous relations are automatically marked
 Potentially significant savings

 We do not need a large seed training set: 30-40 relations
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Requirements-Driven Testing



Traceability

In many domains, various types of traceability
are required

For example, in automotive (ISO 26262),
traceability between requirements and system
tests: requirements-driven testing

Many requirements, many tests, therefore
many traces ...

Automation is required

70



Context

|[EE develops real-time embedded systems:

* Automotive safety sensing systems

* Automotive comfort & convenience systems,
e.g., Smart Trunk Opener

JIEE

International Electronics
& Engineering (IEE)
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Objectives

e Support generation test cases from requirements

e Capture and create traceability information between test
cases and requirements

e Requirements are captured through use cases

e Use cases are used to communicate with customers and the
system test team

o Complete and precise behavioral models are not an option:
too difficult and expensive (no model-based testing)
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Strateqgy

e Analyzable use case specifications

e Automatically extract test model from the use case
specifications using Natural Language Processing

e Minimize modeling, domain modeling only

e No behavioral modeling
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UMTG

THE ACTOR SEND
THE ACTOR SEND
THE ACTOR SEND

THE SYSTEM VALI
THE SYSTEM DIS

= Use Cases

Evaluate
Consistency
Domam Model /

t> 0&&t <50
Stlatus (= null
Errors.size() == U

Test Cases
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Restricted Use Case Modeling:
RUCM

« RUCM is based on a (1) template, (2) restriction rules,
and (3) specific keywords constraining the use of
natural language in use case specifications

 RUCM reduces ambiguity and facilitates automated
analysis of use cases

e Conformance is supported by a tool based on NLP
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RUC M [Yue et al. TOSEM’13]

Use Case Name: Identify Occupancy Status
Actors: AirbagControlUnit
Precondition: The system has been initialized

Basic Flow
1. The seat SENDS occupancy status TO the system.

BofE b T TR 86 4 R0Hy oS AT APam fiRnro! has been sent.

3. The system VALIDATES THAT the occupant class for airbag control is valid.
4. The system SENDS the occupant class for airbag control TO AirbagControlUnit.

Specific Alternative Flow

Iﬁgsﬁg’ondition: The previous occupant class for airbag control has been sent.
1. IF the occupant class for airbag control is not valid THEN

e e e et o e NN IR s tEneses msasasrmmared Alacas famr Atulan s AaassinslTEREA




?Elicit Use Cases | ?Model the Domain |

THE ACTOR SEND / % I
THE ACTOR SEND
THE ACTOR SEND
RUCM Evaluate Domain Model E %
Use Cases Consistency R \Missing Entities

?Specify Constraints |

Identify Constraints

TEMPERATURE IS LOW /
t> 0&&t<50

STATUS IS VALID Status = null

ERRORS ARE ABSENT RIS ::_“
: o OCL constraints
Constraint descriptions
\4
14

Generate

6  Generate + Tt Test Cases
Scenarios and
EEEN |
Diagrams Scenarios Mapping Table

Test Cases

Inputs




: ==
Evaluate
J ——— Consistency J

+ 0
Identify Constraints ?Specify Constraints |
g aat o

t> 0&&t<50
STATUS IS VALID
ERRORS ARE ABSENT

olatus = null

J

\4

Based on Natural

6  Generate

Scenarios and
Inputs

Language Processing




Basic Flow

1. The seat SENDS occupancy status TO the system. > [INPUT STEP

DOMAIN ENTITY

2. INCLUDE USE CASE Classify occupancy status. — | INCLUDE STEP

3. The system VALIDATES THAT

—— |[CONDITIONAL STEP
the occupant class for airbag control is valid and

CONSTRAINT

the occupant class for seat belt reminder is valid.

CONSTRAINT

4. The system SENDS the occupant class for airbag control TO

AirbagGontrolUit.

—— |OUTPUT STEP

9. The system SENDS the occupant class for seat belt reminder T0 —— |OUTPUT STEP

Rt pnnolUnit

6. The System Waits for next execution cycle. —— [INTERNAL STEP

Postcondition: The occupant class for airbag control and the POSTCONDITION
occupant class for seat belt reminder have been sent.
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“no error has bheen detected”

OCL Constraint
Error.allinstances()

UselaseStart DomainEntity

b
\
\
\
\
\
\
\
\
\

OccupancyStatus

OCL Constraint

->forAll( i | 1.isDetected = false)

’

“the occupant class for aifbag
control was derived.”

. 1

A 4

Condition
T

Exit| |Output
o

DomainEntity
Exit

OCL Constraint

DomainEntity

BodySenseSystem.allinstances() - forAll( b |

b.0ccupantClassForAirbag = Child
OR b.OccupantClassForAirbag = Adult)

Constraint solving: UML2Alloy




Evaluate Model Consistency

BasicFlow ——> | BASIC FLOW BEGIN |
1. The seat SENDS occtus TO the system. e
2. INCLUDE USE CASE Classify occupancy status. . A L b c t I c I ] f ] t- F- I t
3. The system VALIDATES THAT Ir ag On ro aSSI Ica Ion I er
— | CONDITIONAL STEP |
the occupant class for airbag control is valid and
[ |

Occupant Class for Airbag Control
5. The system SENDS the occupant class for seat belt reminder T0 —>
SeatBeltControlUnit.

e e Occupant Class for Seat Belt Reminder

the occupant class for seat belt reminder is valid.
Postcondition: The occupant class for airbag control and the — | POSTCONDITION
occupant class for seat belt reminder have been sent. 15

4. The system SENDS the occupant class for airbag control TO —> | OUTPUT STEP

Tagged Use Case Domain Entities

AirbagControl

OccupantStatus

- OccupantClassForAirbagControl
- OccupantClassForSeatBeltReminder
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Case Study

e BodySense, embedded system for detecting occupancy

status in a car W
IEE r |

e Evaluation:

e Cost of additional modelling (Constraints)

e Effectiveness in terms of covered scenarios
compared to current practice at IEE

e Keep in mind changes and repeated testing
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Costs of Additional Modeling

Use Case Steps Use Case OCL
Flows Constraints
UC1 50 8 9
UC2 44 13 7
UC3 35 8 8
UC4 59 11 12
UC5 30 8 5
UC6 25 6 12

5 to 10 minutes to write each constraints
=> A maximum of 10 hours in total
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Effectiveness: scenarios covered

It is hard for engineers to capture
100%

all the possible scenarios

involving error conditions.
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Generating OCL Constraints

» (Constraints may be a challenge in practice

* NLP: Semantic Role Labeling

* Determine the role of words in a sentence
(e.g., affected actor)

» Match words with corresponding concepts in
the domain model

* Generate an OCL formula based on patterns
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Semantic Role Labeling (SRL)

“no error has heen detected”
Al ¥ verb

Error.allinstances()->forAll( i | i.isDetected = false)

AT verb
AO: actor that performs A1: actor that is affected by the
an activity activity described in a sentence

“The system detects temperature errors
AO verh o Al

TemperatureError.allinstances()->forAll( i | i.isDetected = true)

A verb




Empirical Evaluation

o Case study: BodySense, embedded system for detecting
occupancy status in a car

e Evaluation:

o Automatically generate the OCL constraints ruired
to automatically derive executable test cases

e Automatically generate executable test cases
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OCL generation: Precision and Recall

» 88 OCL constraints to be generated
e OCLGen generates 69 constraints

e 66 correct, only 3 incorrect

e Very high precision
: # Correctly generated constraints 66
recision = J S — =0 A
P # Generated constraints 69 ey
e High Recall
recall = 7 borrectly generated constraints - 66 _ 075

# Constraints to be generated 88
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Results: Limiting Factors

» Imprecise specifications

e “The system VALIDATES THAT the temperature is valid*

BodySense.allinstances()->forAll( 1 | i.temperature < 200 )

e Inconsistent terminology
e “The system VALIDATES THAT the occupancy status is valid*

BodySense.allinstances()->forAll( i | i.occupancyStatus <> Empty )
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Description The MALICIOUS user accesses resources that are dedicated to
a user with a different role.

P| 1| MISUSE CASE Bypass Authorization Schema ‘
2
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Description The MALICIOUS user accesses resources that are dedicated to
a user with a different role.
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1. The system VALIDATES THAT the user agreed to show his name
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Security Testing

Benefits of automated generation

pecifications pecifications

Automated Generation of Automated generation reduces
development costs

* Ensures coverage and traceability

« Compliance with standards and

regulations

Executable Test Cases

Security
Functional
Testing

Validating whether the
specified security
properties are

implemented correc

Security
Vulnerability
Testing

Addressing the
identification of
system
vulnerabilities



Summary

Well-formed, consistent, complete, information?

Extraction
from NL Requirements MRS
Documents? Change impact?

Other Artifacts

Automated Testing Product Configuration
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The Gomplexity of our World

o Many applications, diversity of contexts, and types of NL
requirements

e Variety of very different working assumptions
Form of requirements, e.g., RUCM
Change information
Modeling practice, e.g., domain models

Scale, e.g., embedded automotive versus satellite ground
control systems



The Road Ahead

* Practical solutions are possible based on
combining advanced NLP and (often) machine
learning.

* We must account for practicality and
scalability at the outset, not as an
afterthought.

* We need more (reported) industrial
experiences, as working assumptions play a
key role.
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