
.lu
software verification & validation
VVS

Automated Analysis of
Natural-Language Requirements:

Industrial Needs and Opportunities

AIRE’2018 @ RE’2018

Lionel Briand
Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

Acknowledgements

2

• Mehrdad Sabetzadeh
• Chetan Arora
• Shiva Nejati
• Fabrizio Pastore
• Chunhui Wang

3

Introduction

Applications

4

• Requirements to support a shared understanding
among stakeholders in (large) projects, e.g.,
software engineers and domain experts

• Requirements as contract with customers
• Requirements to support compliance with

standards, e.g., traceability to tests
• Requirements to support quality assurance, e.g.,

system (security) testing
• Requirements to support change control
• Requirements to support product-line

configuration

For many of these applications,
there is little automated tool support.

5

Forms of NL Requirements

6

• Natural language statements, complying or
not with templates

• User stories, following various templates
• Use case specifications, possibly structured

and restricted
• Mixing natural language and models, e.g.,

class and activity diagrams

The best form of requirements depends on
context and targeted applications.

7

Contextual Factors

8

• No “right” way to express requirements

• Domain complexity and criticality
• Regulatory compliance, e.g., standards
• Project size, team distribution, and number of

stakeholders
• Background of stakeholders and communication

challenges
• Presence of product lines with multiple customers
• Importance of early contractual agreement
• Frequency and consequences of changes in

requirements

Observations

9

• Natural language in requirements won’t go
away.

• The cost of rigorous requirements
engineering must be justified by clear
automation benefits.

• Limited research given the many and varying
industrial automation needs, in widely
varying contexts.

Outline

10

• Report on a variety of research projects
• Collaborations with industry
• Various objectives and applications
• Examples from automotive and satellite
• Lessons learned and reflections

Overview

NL Requirements

Well-formed, consistent, complete, information?

Automated Testing Product Configuration

11

Extraction
from

Documents? Change impact?

Other Artifacts

Mode of Collaboration

12

• Research driven by industry needs
• Realistic evaluations
• Combining research with innovation and technology transfer

Adapted from [Gorschek et al. 2006]

Problem
Formulation

Problem
Identification

State of the
Art Review

Candidate
Solution(s)

Initial
Validation

Training

Realistic
Validation

Industry Partners

Research Groups

1

2

3

4

5

7

Solution
Release

8

6

13

Change Impact Analysis

Supporting Change

14

• Requirements change frequently
• Changes have side-effects on other

requirements, design decisions, test cases …
• How do we support such changes in ways

that scale to hundreds of requirements or
more?

• Automated impact analysis

Inter-Requirements

15

Inter-Requirements
Change Impact Analysis

Approach

16

• Hundreds of requirements
• No traceability
• We propose an approach based on: (1) Natural

Language Processing, (2) Phrase syntactic
and semantic similarity measures

Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

17

Change

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

18

Challenge #1
Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

19

Challenge #2
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

20

• R1: The mission operation controller shall transmit satellite status reports to the user help desk
document repository.

• R2: The satellite management system shall provide users with the ability to transfer
maintenance and service plans to the user help desk.

• R3: The mission operation controller shall transmit any detected anomalies with the user help
desk.

Challenge #2
Change Rationale

21

Possible Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission
operation controller” and “user help desk” (R3)
3: We no longer want to “transmit satellite status
reports” to “user help desk” but instead to “user
document repository” (only R1)

Determine conditions under which change
should propagate

Solution Characteristics
• Account for the phrasal structure of requirements

The mission operation controller shall transmit satellite status
reports to the user help desk document repository.

user help desk, Deleted
user document repository, Added

• Account for change rationale expressed by user (propagation condition)

• Consider semantically-related phrases that are not exact matches and
close syntactic variations across requirements: quantitative matching of
condition

22

Narcia

https://sites.google.com/site/svvnarcia/

Evaluation

24

158 Requirements
9 change scenrios

72 Requirements
5 Change
Scenarios

“touristic attraction”
is a

“point of interest”
Reason:

Lack of a Domain Model

1 impacted requirement missed
out of a total of 106 impacted

requirements.

Effectiveness of Our Approach

25

Fu
til

e I
ns

pe
ct

ion
 Ef

fo
rt

1% - 7% 6% - 8%

45%

Requirements to Design

26

Requirements-to-Design
Change Impact Analysis

Motivations

• Rigorous change management required by many standards
and customers in safety critical systems, and embedded
systems in general in many industry sectors

• Impact of requirements changes on design decisions

• Complete and precise design impact set

• SysML commonly used as embedded and cyber-physical
system design representation

27

Requirements Diagram

28

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

Compute Impacted Elements

31

Structural
Analysis

Behavioural
Analysis

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Change to R11: Change over temperature detection level to 147 C
from 110 C.

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

input
from B2

output
to B5

output
to B4

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Rank Elements

38

Natural
Language

Processing
Analysis

Change to R11: Change
over temperature detection
level to 147 C from 110 C.

B2, B3, B4, B6

B2
B6
B3
B4

Ranked
according to
likelihood of

impact

Change Statements

• Informal inputs from systems engineers regarding impact of
changes

• Example: “Temperature lookup tables and voltage converters
need to be adjusted”

39

Natural Language Processing
• Compute similarity scores (syntactic and semantic) between

model elements labels and change statements

• Experimented with pairwise combinations of syntactic and
semantic measures

• Sort the design elements obtained after structural and
behavioral analysis based on the similarity scores

• Engineers inspect the sorted lists to identify impacted
elements

40

Identifying a Subset to Inspect
• Pick the last significant peak in delta similarity between two

successive elements

• Point beyond which the similarity scores can no longer adequately
tell apart the elements

D
el

ta

r = 49%

% of elements inspected in the sorted list

0 25 50 75 100

0.0

0.1

0.2

0.0

0.8

0.6

0.4

0.2

S
im

ila
ri

ty
 s

co
re

�

h = 0.26max

h = 0.026max/10
h last

Figure 13: Ranked similarity scores and delta chart
for an example change scenario from CP. The delta
chart is used for computing the cuto↵ (r).

and i�1. For easier understanding, in Figure 13, we further
show the ranked similarity scores on the top of the delta
chart. These similarity scores were computed using Soft-
TFIDF (syntactic measure) and JCN (semantic measure).
As described in Section 2.3, the label of each EIS element
e is compared against all keyphrases in the change state-
ment using both SoftTFIDF and JCN. The maximum value
obtained from all these comparisons is assigned to e as its
similarity score. The chart on the top of Figure 13 plots the
EIS elements in descending order of the similarity scores.

For the cuto↵, we pick the point on the X-axis after which
there are no significant peaks in the delta chart. Intuitively,
the cuto↵ is the point beyond which the similarity scores can
no longer adequately tell apart the elements in terms of be-
ing impacted. What is a significant peak is relative. Based
on our experiments, a peak is significant if it is larger than
one-tenth of the highest peak in the delta chart, denoted
h
max

in Figure 13. The only exception is the peak caused
by zeroing out similarity scores smaller than 0.05 (see Sec-
tion 2.3). This peak, if it exists, is always the last one and
hence denoted h

last

. Since h
last

is artificial in the sense that
it is caused by zeroing out negligible similarity values, we
ignore h

last

when deciding about the cuto↵.
More precisely, we define the cuto↵ r to be at the end of

the right slope of the last significant peak (excluding h
last

).
In the example of Figure 13, h

max

= 0.26. Hence, r is at
the end of the last peak with a height > h

max

/10 = 0.026.
We recommend that engineers should inspect the EIS ele-
ments up to the cuto↵ and no further. In the example of
Figure 13, the cuto↵ is at 49% of the ranked list. We note
that the cuto↵ can be computed automatically and with-
out user involvement. Therefore, the delta charts and their
interpretation are transparent to the users of our approach.
In summary, for each change scenario, we automatically

recommend, through the analysis of the corresponding delta
chart as explained above, the fraction of the ranked EIS
that the engineers should manually inspect for identifying
actually-impacted elements.
RQ4. (E↵ectiveness) To answer RQ4, we report the re-
sults of applying the best similarity measure alternatives
from RQ2 for ranking the EISs computed by the algorithm of
Figure 8 (i.e., combined structural and behavioral analysis),
and then considering only the ranked EIS fractions recom-
mended by the guidelines of RQ3. Note that in this RQ, by
EIS we mean the fraction obtained after applying the guide-
lines of RQ3. In Figure 14, we show for our 16 changes the
size and precision distributions of the recommended EISs.
These distributions are provided separately for the best simi-
larity alternatives from RQ2, i.e., SoftTFIDF combined with

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

After NLP

Similarity Measure Combincations

Pr
ec

is
io

n(
%

)

●

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0
10

20
30

40
50

60

After NLP

Similarity Measure Combincations

EI
S

Si
ze

 (#
)

(b) Precision

Pr
ec

is
io

n
(%

)
0

10
20

30
40

50

(a) Size

EI
S

Si
ze

 (#
)

0
10

20
30

40
50

Soft.RES

60
7060

Soft.JCN Soft.RES Soft.JCN

Figure 14: Size and precision of EISs that result
from the application of the guidelines of RQ3 to the
EISs computed by the algorithm of Figure 8.

RES (denoted Soft.RES) and SoftTFIDF combined with
JCN (denoted Soft.JCN).
The average EIS size is 30.2 for Soft.RES and 18.5 for

Soft.JCN. The average precision for Soft.RES and Soft.JCN
are 19.5% and 29.4% respectively. As for recall, Soft.RES
yields a recall of 100% for all 16 changes, while Soft.JCN
misses one element for one change. That is, using Soft.JCN,
we have a recall of 100% for 15 changes, and a recall of 85%
for one change (i.e., an average recall of 99%). The results
clearly show that Soft.JCN yields better overall accuracy.
In summary, after applying our best NLP-based similarity

measure, Soft.JCN, the average precision of our analysis in-
creases to 29.4% compared to 16% obtained by the combined
behavioral and structural analysis (discussed in RQ1). The
average recall reduces to 99% compared to 100% obtained
by the combined analysis. Finally, using NLP, the average
number of elements to be inspected by the engineers reduces
to 18.5 (just 4.8% of the entire design model) compared to
38 (9.7% of the design model) before applying NLP.
RQ5. (Execution Time) The execution time for both
steps of our approach, i.e., computing the EISs and ranking
the EISs, was in the order of seconds for the 16 changes.
Given the small execution times, we expect our approach to
scale to larger systems. Execution times were measured on
a laptop with a 2.3 GHz CPU and 8GB of memory.

Validity considerations and threats. Internal and ex-
ternal validity are the most relevant dimensions of validity
for our case study. With regard to internal validity, an im-
portant consideration is that the change statements must
represent the understanding of the engineers about a change
before the engineers have determined the impact of that
change; otherwise, the engineers may learn from the anal-
ysis they have performed and provide more precise change
statements than when they have not examined the design
yet. If this occurs, the accuracy results would not faithfully
represent what one can achieve in a non-evaluation setting.
In our case study, the change statements were pre-existing
and written at the time that the change requests had been
filed, i.e., before the impact of the changes had been exam-
ined. The engineers in our case study were therefore required
only to inspect the design and provide the actual impact sets
(gold standard). Consequently, learning is not a significant
threat to internal validity. A potential threat to internal va-
lidity is that one of the engineers involved in our case study
is a co-author. To minimize potential bias, the engineers
involved neither used our tool nor saw the results generated
by the tool until they had specified the actual impact sets.
With regard to external validity, while our case study is in-

Overview

42

Build SysML
Models

System
Requirements

Traceability
Information Model

Requirements and
Design Models

Estimated
Impact Set

Compute
Impacted
Elements

Requirements Changes and
Informal Change Statements

Phrases
Similarity

Matrix

Process
Change

Statements

Sort
Elements

Sorted
Elements

Evaluation

43

370 elements
16 change scenarios

Effectiveness of Our Approach
Fu

til
e I

ns
pe

ct
ion

 Ef
fo

rt
(%

)

Structural

Effectiveness of Our Approach

Structural Behavioural

Fu
til

e I
ns

pe
ct

ion
 Ef

fo
rt

(%
)

Effectiveness of Our Approach

Structural Behavioural NLP

1 impacted element missed out of
a total of 81 impacted elements.

Fu
til

e I
ns

pe
ct

ion
 Ef

fo
rt

(%
)

47

Extracting Domain Knowledge

Domain Knowledge

48

• All requirements depend, more or less
explicitly, on domain knowledge

• Domain-specific concepts and terminology
• In practice: Not always consistent among all

stakeholders
• Software engineers often have a superficial

understanding of the application domain they
target

• Extracting domain knowledge from
requirements: Glossary, domain model …

Domain Models
A domain model is a representation of conceptual entities or

real-world objects in a domain of interest

49

• Glossary
• Constraints

Motivation
• Representation of important domain concepts and their relations

• Facilitate communication between stakeholders from different
backgrounds

• Help identify inconsistencies in terminology, etc.

• Helps assess completeness of requirements

• In practice, domain models are not preceding the elicitation and writing of
requirements

50

Context

51

Requirements
Analysts

NL Requirements
Document

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Build Domain
Model

Specify
Requirements

Problem Definition

• Manually building domain models is laborious

• Automated support is required for building domain models

52

State of the Art

• Multiple approaches exist for extracting domain models or
similar variants from requirements using extraction rules

• Majority assume specific structure, e.g., restricted NL

• Extraction of direct relations only but not indirect ones

• Limited empirical results on industrial requirements

76

Approach

54

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Extraction
Rules

Approach

55

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Extraction
Rules

Grammatical Dependencies

56

The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize

Lift Dependencies to Semantic Units

57

The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize

System
Operator

Simulator
Configuration

initalize

nsubj dobj

Approach

58

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

23 Extraction
Rules

Link Paths – Indirect Relations

59

The simulator shall send log messages to the
database via the monitoring interface.

Simulator Log Messagesend

Simulator Databasesend log message
to

Simulator Monitoring
Interface

send log message
to database via

How useful is our approach?

50 Requirements
213 Relations

• Interview survey with
experts

• Correctness and Relevance
of each relation

• Missing relations in each
requirement

83

Relevance: 37% (avg.)

Correctness: 88% (avg.)

Results

Missed: 10% (avg.)

Breakdown of the
remaining 63%

12% are incorrect
51% are correct but

superfluous

Incorrectness largely
explained by NLP

errors

61

Statistics for Superfluousness

69%

20%

11%

0% 10% 20% 30% 40% 50% 60% 70% 80%

TOO	DETAILED

TOO	UNSPECIFIC

TRIVIAL	KNOWLEDGE

Evidence that NL requirements
contain finer-grained information

than what one normally captures in a
domain model

62

Can we improve the relevance of
model extraction results?

63

Active Learning

• Definition: Machine learning paradigm in which a learning
technique interactively requests inputs from an external
source in order to improve the accuracy of the machine
learning model.

• Application: We process analysts’ feedback, and
dynamically apply the logic gleaned from the feedback for
reducing superfluous information.

64

Active Learning Feedback Loop

Pick relation(s)
to inspect

Inspect
relation(s)

Decide about
relevance

Classification
Model

labeled
relations

Recommendations

65

Example Features (1/2)

Label-independent (Never updated):

• Type of the relation: Association, Aggregation,
Generalization

• The extraction rule that produced the relation

• Number of tokens in the relation’s end points (concepts)

66

Example Features (2/2)

Label-dependent (Updated with new relations):

• Number of relevant relations (in the training set) extracted
from the same requirement as the given relation

• Number of relevant relations in the training set that share
one end concept with the given relation

• Number of relevant relations in the training set that share
both end concept with a given relation

67

Effectiveness of Detecting
Superfluous Relations

• 96% of the recommendations made are correct

• The approach is unlikely to throw the analyst off-course.

• 45% of the superfluous relations are automatically marked

• Potentially significant savings

• We do not need a large seed training set: 30-40 relations

68

69

Requirements-Driven Testing

Traceability

70

• In many domains, various types of traceability
are required

• For example, in automotive (ISO 26262),
traceability between requirements and system
tests: requirements-driven testing

• Many requirements, many tests, therefore
many traces …

• Automation is required

Context

International Electronics
& Engineering (IEE)

IEE develops real-time embedded systems:
• Automotive safety sensing systems
• Automotive comfort & convenience systems,

e.g., Smart Trunk Opener

71

Objectives
• Support generation test cases from requirements

• Capture and create traceability information between test
cases and requirements

• Requirements are captured through use cases

• Use cases are used to communicate with customers and the
system test team

• Complete and precise behavioral models are not an option:
too difficult and expensive (no model-based testing)

72

Strategy

• Analyzable use case specifications

• Automatically extract test model from the use case
specifications using Natural Language Processing

• Minimize modeling, domain modeling only

• No behavioral modeling

73

Errors.size() == 0
Status != null

t > 0 && t < 50

Constraints

Domain Model Test Cases

Test Scenarios

74

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDUse Cases

Evaluate
Consistency

UMTG

• RUCM is based on a (1) template, (2) restriction rules,
and (3) specific keywords constraining the use of
natural language in use case specifications

• RUCM reduces ambiguity and facilitates automated
analysis of use cases

• Conformance is supported by a tool based on NLP

Restricted Use Case Modeling:
RUCM

75

RUCM
Use Case Name: Identify Occupancy Status
Actors: AirbagControlUnit
Precondition: The system has been initialized
. . .

Basic Flow
1. The seat SENDS occupancy status TO the system.
2. INCLUDE USE CASE Classify occupancy status.
3. The system VALIDATES THAT the occupant class for airbag control is valid.
4. The system SENDS the occupant class for airbag control TO AirbagControlUnit.

Specific Alternative Flow
RFS 3
1. IF the occupant class for airbag control is not valid THEN
2. The system SENDS the previous occupant class for airbag control TO …

Postcondition: The occupant class for airbag control has been sent.

Postcondition: The previous occupant class for airbag control has been sent.

[Yue et al. TOSEM’13]

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID

Identify Constraints
4

Constraint descriptions
Errors.size() == 0
Status != null

t > 0 && t < 50

Generate
Scenarios and

Inputs

6

Elicit Use Cases
1

Missing Entities

Specify Constraints
5

OCL constraints

Model the Domain
2

Evaluate
Consistency

3 Domain ModelRUCM
Use Cases

Generate
Test Cases

7

Test Cases
Object

Diagrams
Test

Scenarios Mapping Table

Elicit Use Cases
1

Model the Domain
2

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDRUCM

Use Cases

Generate
Scenarios and

Inputs

6

ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID

Identify Constraints
4

Constraint descriptions

Evaluate
Consistency

3
Domain Model

Based on Natural
Language Processing

78

Errors.size() == 0
Status != null

t > 0 && t < 50

Specify Constraints
5

OCL constraints

79

Basic Flow

1. The seat SENDS occupancy status TO the system.

2. INCLUDE USE CASE Classify occupancy status.

3. The system VALIDATES THAT

the occupant class for airbag control is valid and

the occupant class for seat belt reminder is valid.

4. The system SENDS the occupant class for airbag control TO
AirbagControlUnit.

5. The system SENDS the occupant class for seat belt reminder TO
SeatBeltControlUnit.

6. The System Waits for next execution cycle.

Postcondition: The occupant class for airbag control and the
occupant class for seat belt reminder have been sent.

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

OUTPUT STEP

OUTPUT STEP

INTERNAL STEP

POSTCONDITION

DOMAIN ENTITY

CONSTRAINT

CONSTRAINT

DOMAIN ENTITY

DOMAIN ENTITY

UseCaseStart

Input

Include

Condition

Output

Exit

Condition

Exit Output

Exit

OccupancyStatus
DomainEntity

Condition

“no error has been detected”

OCL Constraint
Error.allInstances()
->forAll(i | i.isDetected = false)

“the occupant class for airbag
control was derived.”

…
DomainEntity

…
DomainEntity

OCL Constraint
BodySenseSystem.allInstances() → forAll(b |

b.OccupantClassForAirbag = Child
OR b.OccupantClassForAirbag = Adult)

OCL Constraint
…

Constraint solving: UML2Alloy

Evaluate Model Consistency

81

Occupant Class for Airbag Control

Occupant Class for Seat Belt Reminder

Domain Entities

AirbagControl

System

Sensor

OccupantStatus

- OccupantClassForAirbagControl
- OccupantClassForSeatBeltReminder

Airbag Control Classification Filter Sensor

ClassificationFilter

Tagged Use Case

1
1

1
1

1
1

1

1..*

1 1

82

https://sites.google.com/site/umtgTestGen/

Toolset integrated with IBM
DOORS and Rhapsody

Case Study
• BodySense, embedded system for detecting occupancy

status in a car

• Evaluation:

• Cost of additional modelling (Constraints)

• Effectiveness in terms of covered scenarios
compared to current practice at IEE

• Keep in mind changes and repeated testing

83

Costs of Additional Modeling

84

Use Case Steps Use Case
Flows

OCL
Constraints

UC1 50 8 9
UC2 44 13 7
UC3 35 8 8
UC4 59 11 12
UC5 30 8 5
UC6 25 6 12

5 to 10 minutes to write each constraints
=> A maximum of 10 hours in total

Effectiveness: scenarios covered

85

0

5

10

15

20

25

30

35

40

UC1 UC2 UC3 UC4 UC5 UC6

Scenarios Covered By Engineer Scenarios Covered By UMTG

100%

100%

100%

100% 100%
100%

81%

77%
100%

86%

50% 67%

It is hard for engineers to capture
all the possible scenarios
involving error conditions.

Generating OCL Constraints

86

• Constraints may be a challenge in practice
• NLP: Semantic Role Labeling
• Determine the role of words in a sentence

(e.g., affected actor)
• Match words with corresponding concepts in

the domain model
• Generate an OCL formula based on patterns

Semantic Role Labeling (SRL)
“no error has been detected”

Error.allInstances()->forAll(i | i.isDetected = false)
A1

“The system detects temperature errors

TemperatureError.allInstances()->forAll(i | i.isDetected = true)

A1

A1A0

A1: actor that is affected by the
activity described in a sentence

A0: actor that performs
an activity

A1 verb

verb

verb

verb

Empirical Evaluation

• Case study: BodySense, embedded system for detecting
occupancy status in a car

• Evaluation:

• Automatically generate the OCL constraints required
to automatically derive executable test cases

• Automatically generate executable test cases

88

OCL generation: Precision and Recall
• 88 OCL constraints to be generated

• OCLGen generates 69 constraints

• 66 correct, only 3 incorrect

• Very high precision

• High Recall

89

Correctly generated constraints
Generated constraints

=precision = = 0.9766
69

Correctly generated constraints
Constraints to be generated

=recall = = 0.7566
88

Results: Limiting Factors

• Imprecise specifications
• “The system VALIDATES THAT the temperature is valid“

• Inconsistent terminology
• “The system VALIDATES THAT the occupancy status is valid“

BodySense.allInstances()->forAll(i | i.temperature < 200)

BodySense.allInstances()->forAll(i | i.occupancyStatus <> Empty)

90

Misuse
Case

Specifications

Security
Use Case

Specifications

Security
Functional

Testing

Security
Vulnerability

Testing

Automated Generation of
Executable Test Cases

Validating whether the
specified security

properties are
implemented correctly

Addressing the
identification of

system
vulnerabilities

Benefits of automated generation:

• Automated generation reduces
development costs

• Ensures coverage and traceability
• Compliance with standards and

regulations

Security Testing

Summary

NL Requirements

Well-formed, consistent, complete, information?

Automated Testing Product Configuration

92

Extraction
from

Documents? Change impact?

Other Artifacts

The Complexity of our World
• Many applications, diversity of contexts, and types of NL

requirements

• Variety of very different working assumptions

• Form of requirements, e.g., RUCM

• Change information

• Modeling practice, e.g., domain models

• Scale, e.g., embedded automotive versus satellite ground
control systems

The Road Ahead

94

• Practical solutions are possible based on
combining advanced NLP and (often) machine
learning.

• We must account for practicality and
scalability at the outset, not as an
afterthought.

• We need more (reported) industrial
experiences, as working assumptions play a
key role.

.lu
software verification & validation
VVS

Automated Analysis of
Natural-Language Requirements:

Industrial Needs and Opportunities

AIRE’2018 @ RE’2018

Lionel Briand
Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

References

96

Analysis of Natural Language Requirements

• [TSE 2017] C. Arora et al., Automated Extraction and Clustering of Requirements Glossary Terms

• [MODELS 2016] C. Arora et al., Extracting Domain Models from Natural-Language Requirements: Approach and Industrial Evaluation

• [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP Approach

• [TSE 2015] C. Arora et al., Automated Checking of Conformance to Requirements Templates using Natural Language Processing

Requirements-Driven (Security) Testing

• [ISSTA 2015] C. Wang et al., Automatic Generation of System Test Cases from Use Case Specifications

• [ICST 2017] C. Wang et al., System Testing of Timing Requirements based on Use Cases and Timed Automata

• [ICST 2018] C. Wang et al., Automated Generation of Constraints from Use Case Specifications to Support System Testing

• [ISSRE 2018] P. Mai et al., A Natural Language Programming Approach for Requirements-based Security Testing

References

97

Product Families and Configuration
• [SoSYM 2018] I. Hajri et al., Configuring Use Case Models in Product Families

• [JSS 2018] I. Hajri et al., Change Impact Analysis for Evolving Configuration Decisions in Product
Line Use Case Models

Impact Analysis
• [FSE 2016] S. Nejati et al., Automated Change Impact Analysis between SysML Models of

Requirements and Design

• [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP
Approach

