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Summary



What’s going on
As the existence of AIRE itself proves, Artificial Intelligence is gaining an 
increasing role in RE

Not surprisingly: RE is a discipline of knowledge, beliefs, wishes and 
understanding

Yet, so far most applications fall into two classes of problems

● classification
● NLP-related

Can we do more?



A crowded zoo
Inspiration for this talk came from a delightful 
small post at the Asimov Institute*

If you can’t tell your SAEs from your VAEs and 
DAEs by heart, this is a good post to read

Our question: how the diverse beasts in the zoo 
can help tackle different RE problems?

* http://www.asimovinstitute.org/



Basics
One of the most basic task is supervised learning

We have a number of cases of (input,output) observations
often, the training set requires manual tagging or historical data

Want to train a NN to learn the relation

Then, we feed a previously-unseen input, and expect the NN to divine the 
output

When the output is interpreted as a class to which the input belong, we have 
the most classic task of classification



Basics
Perceptrons (P) and feed-forward neural networks (FF) 
provide the basic machinery for supervised learning

On each learning step, a measure of the difference between 
the expected output and the actual output is 
back-propagated, thus optimizing the weights along the 
various connections



Basics
In theory, given a sufficient number of nodes / hidden layers, and a sufficient 
number of training samples, a FFNN can learn most relations

In practice, performance is terrible, and capabilities are limited (however, they 
make useful components of more complex architectures)

A major problem for RE: how do you get enough samples for training?

● We all know: RE is human-intense, no huge annotated datasets are 
standardised or even available, etc.

● Student-based annotation may not provide representative samples for 
real-world learning



An example
Automatically Classifying Requirements from App Stores: A Preliminary Study
by R. Deocadez, R. Harrison, D. Rodriguez

2 classes: functional or non-functional (requirement)

300 manually-classified app store reviews used for training (in a 
semi-supervised learning context); forced 50/50 representation of F/NF

1 million reviews for 40 top-scoring apps

k-NN (k nearest neighbour, not neural network!), C4.5, Naive Bayes, SVM



Beyond classification
Although interesting, separating (mostly piecewise-linearly separable) 
instances into classes cover just a small fraction of RE problems

Thought experiment: imagine a day 
in the life of a requirement engineer.
How much time would s/he spend on
the job looking at instances and
classifying them?

New job of the year:
Requirement Entomologist



Identifying patterns
Something we could want to do is identifying 
patterns in things

A Hopfield Network (HN) connects every node to 
every other; each node is both input, hidden and 
output at different stages

Once trained with “perfect instances” of patterns, 
the network will converge to the (right?) “perfect 
instance” when presented with imperfect 
instances



Identifying patterns
HNs can work as classifiers, if classes coincide with patterns

HNs can work as de-noisers, if the difference between the imperfect instance 
and the pattern can be interpreted as noise

HNs can work as associative memories, if we present just part of a pattern 
and want it complete.

All these uses correspond to different RE problems, for example:

● autocompletion in a “soft” editing tool
● refactoring of requirements / templates



HN vs MC

Hopefield Network Markov Chain



HN vs MC

Hopefield Network Markov Chain

Structurally similar, but used differently.

In MC, a link (a,b) with weight w means that if the present 
state is a, then the probability that the next state is b is w.

Hence: memoryless -- only the current state counts.

In contrast, HN are more global (values propagation)



Completing patterns
Boltzmann Machines (BM) 
combine HN and MC

Certain nodes are designated as 
input, while the hidden layer is 
probabilistic

Run by going back and forth until 
the network stabilizes



Completing patterns
Restricted Boltzmann Machines (RBM) 
are similar, but connect by layers instead 
of a complete graph

This makes them more easily usable and 
more efficient to run

Importantly, these are the building blocks 
for deep belief networks (later)



Generating data
(Stacked) RBMs can be used to generate
ideal forms of data. 

A scenario for unsupervised learning:

● the network is trained on a number of untagged instances
○ this sets weights on the links 

● then, random values are set on the nodes, the network is run until 
stabilization, and output is read on the “input” nodes

● This is sometimes referred as machines dreaming



Use cases for RBM
In general:

● dimensionality reduction
● classification
● regression
● collaborative filtering
● feature learning
● topic modeling

In RE applications:

● What if I reverse the FR/NFR classifier 
and ask to generate a requirement 
(given the class) instead?

○ Creativity-enhancing techniques
● Once we have trained a network in an 

unsupervised fashion, what can we 
learn from the synthesized stable 
states?

● Let’s feed requirements at a RBM. It will 
implicitly classify them according to 
“invented” classes

○ Will these classes mirror the IEEE Stds?



Compressing and diluting data
Auto-encoders (AE) are a nifty way to 
compress data

Values are presented to the input cells, and 
the same values are expected in the output 
cells

During training, the AE is forced to invent 
compact representations in the hidden cells

● simply because there are less green 
nodes than yellow/red nodes

In use, compressed form is read from 
“hidden” cells



Compressing and diluting data
This idea could be applied, for example, to 
identifying redundancy in input data

Example: maybe separate features are not 
that independent?

● All requirements coming from a certain 
person are robustness requirements?

● All requirements after a certain time are 
scheduled for the next release?

There is knowledge to be extracted both at 
the code (hidden cells) and at the weights



Compressing and diluting data

Auto-encoder (AE) Sparse AE (SAE) Variational AE (VAE)

Variants of AEs are used to learn more sparse representations that are 
resistant to noise, or to handle probability distributions instead of values



Compressing and diluting data
Variants of AEs are used to learn more sparse representations that are 
resistant to noise, or to handle probability distributions instead of values
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Denoising auto-encoders (DAE) 
are particularly useful in training 
networks that will react graciously 
to “dirty” never-seen before input

They learn to remove noise, and 
produce clean data

Useful for subsequent processing



Deep belief networks
DBN are stacked architectures of RBMs and AEs. Each layer can be trained 
independently, and find a good encoding for the information provided by 
the previous layer, and for the needs of the subsequent layer.



Semantic hashing
Deep AEs can be used to 
provide a compact 
representation for very long 
and complex data

● Example: a whole image to 
a 20-numbers vector

The compressed representation 
can then be used for searching 
and matching

The compressed code is semantic in 
nature

Figure from deeplearning4j user manual



Applications
An old favourite of mine: find similar requirement

A new incoming requirement r is auto-encoded via AEs or DAEs to a small 
feature vector (FV)

The FV for r is compared, on some distance, with the FVs of all previously 
entered requirements

The closest FVs lead to the most similar requirements

● Old approaches based on lexical similarity
● Here, based on semantic hashing



Applications
An old favourite of mine: find similar requirement

A new incoming requirement r is auto-encoded via AEs or DAEs to a small 
feature vector (FV)

The FV for r is compared, on some distance, with the FVs of all previously 
entered requirements

The closest FVs lead to the most similar requirements

● Old approaches based on lexical similarity
● Here, based on semantic hashing

BTW, this is the same kind of stuff that 

powers Watson, IBM’s system for question 

answering (and more).
Can you imagine a role for Watson, say, as 

a support system during a stakeholders’ 

meeting?



Finding related stuff
Searching for semantically-related artifacts is the basic idea for traceability

We can ask traceability questions in many ways, tho:

1. Given a pair of artifacts (a,b), tell me if they should be linked or not
○ → a classification problem (but usually the answer is “no” in 98% of the cases, bias)

2. Given an artifact a and a set of artifacts B, tell me which b ∈ B should be 
linked to a

○ → a search problem

3. Given that I just linked a to b, tell me which a’ (or which (a’,b’) ) I should 
consider next for linking

○ a prioritization problem



Handling sequences
When problems have a sequential structure (as in our 
priority problem), basic NNs are no longer fit for service

● They have only a “stored
memory” that is created at
training time

● Each new instance presented
to the NN treated as an
individual case

Instead, we have to resort to
recurrent neural networks (RNN)



Handling sequences
In RNN, special recurrent cells provide a form of memory

They get as input both the (weighted) values from the input cells, and the 
(weighted) value from their own previous state

Hence, the results of a step are influenced by the partial results from all 
preceding steps

Problem: if each sequence becomes unique, the NN cannot learn

● “vanishing gradient” / “exploding gradient” problem



Handling sequences
In RNN, special recurrent cells provide a form of memory

They get as input both the (weighted) values from the input cells, and the 
(weighted) value from their own previous state

Hence, the results of a step are influenced by the partial results from all 
preceding steps

Problem: if each sequence becomes unique, the NN cannot learn

● “vanishing gradient” / “exploding gradient” problem

“Le passé qui ne passe pas”Perfect memory? That way madness lies
Need a way to forget or selectively 

remember



“Le passé qui ne passe pas”
In a tool that is assisting me in visiting a requirements base, while I establish 
links for traceability, it is perfectly sensible to “remember” what I have done 5 
or 10 minutes ago. Less so, what I have done 10 days ago.

A simple temporal decay is not sufficient: certain things should be 
remembered forever, other are irrelevant after 10 minutes.

Solution: Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRU)

● LSTM store value, but also have gates that decide when the value should be updated, 
propagated, or reset

● when to open or close these gates is learned by the RNN as part of training



LSTM RNN
LSTM RNN have been shown to be able to extract incredible sense from linear 
structures

Most typically: text (a sequence of symbols), which accidentally includes most 
requirements documents

My favourite piece on the subject:

● Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural 
Networks, May 2015 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)



Example: Cybernetic Humour
Corpus: 11.000 jokes (around 1.5Mb of ASCII text, small!)

Network: LSTM RNN with 3 (4) hidden layers, 512 cells per layer, mostly 
standard hyperparameters

No embedded or encoded knowledge about lexicon, syntax, tokenization, 
lemmatization, POS, ontology… just a long sequence of 1.500.000 8-bit values.

What did the network learn?

D. Bacciu, V. Gervasi, G. Prencipe, ☺: An investigation into cybernetic humour, or: Can Machines Laugh?, 
FUN with Algorithms, 2016



Language learning
Our NN learned enough of English (lexicon and syntax) and enough about the 
rethorical structure of jokes that it could generate instances such as:

What do you get if you cross a famous california little boy with 
an elephant for players? 
Market holes.

(Puctuation, spaces, and newlines generated as well)



Concept Learning
It also learned enough 
about the way we use 
sequences of symbols 
(words) in dirty jokes

Q: what can be (and 
cannot be) learned from 
requirements, user stories, 
use cases, etc.?



Learning programming

A basic LSTM RNN as the one we 
used, trained on 474 MB of C 
code (the Linux source tree) can 
generate pretty plausible-looking 
code.

Notice in particular how 
comments and coding style are 
learned from the samples and 
generated accordingly

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
  int error;
  if (fd == MARN_EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem_total)
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
  for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
    }
  }
  rw->name = "Getjbbregs";
  bprm_self_clearl(&iv->version);
  regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS 
<< 12;
  return segtable;
}



More complex structures
It is not uncommon for a problem to have a more complex structure which 
cannot easily be reduced to a sequence

Example: a traceability matrix or
graph could well be considered in
its entirety, rather than as a set of
unrelated (a,b) links.

Indeed, a traceability matrix could
appear as a B/W bitmap (or a color
bitmap, if linking information is
more nuanced)



(Deep) Convolutional NN - (D)CNN
In a CNN, each element of the input structure (the focus) is 
fed to the network together with its immediate neighbours 
(the window).

The focus is then shifted
to the next element, thus
inducing another window
(where the previous focus
would appear), and the
process is repeated



(Deep) Convolutional NN - (D)CNN
In a Deep CNN, the process is iterated multiple times; each 
layer perform a convolution on the output of the layer 
immediately preceding.
In other words, the first
layer may look at 4x4
blocks, and the next up
would look at 4x4 blocks
of results, hence identify
features that appear at
the 16x16 scale.



(Deep) Convolutional NN - (D)CNN
In object recognition tasks, the final outputs are then fed to a 
classifier, tasked with identifying what is represented in an 
image.

Q: Can we imagine using
a DCNN to identify “bad
smells” in traceability
structures?



Understanding and re-generating
Another common problem in RE has to do with refactoring RE artifacts.

For example: I have a proposed requirement,
written in customer-speak. I want to rewrite it
in technical language.

Sounds like magic!



Deep convolutional inverse graphics
networks (DCIGN)
DCIGNs are built to “understand” the input (by encoding it in 
a FV, via convolution), and then generating an output from 
the FV (via deconvolution).

Similar idea to AEs,
but now we can 
change the FV in a
controlled way, and
see what gets
generated...



DCIGN in graphics

T.D. Kulkarni, W. Whitney, P. Kohli, J.B. Tenenbaum, Deep Convolutional Inverse Graphics Network



DCIGN in graphics

T.D. Kulkarni, W. Whitney, P. Kohli, J.B. Tenenbaum, Deep Convolutional Inverse Graphics Network



DCIGN in
graphics

T.D. Kulkarni, W. Whitney, P. Kohli, J.B. Tenenbaum, Deep Convolutional Inverse Graphics Network



DCIGN in RE
In the experiments above, the NN had learned features such as elevation, 
azimuth, pose, shape

Q: what kind of interpretable features would such a network learn on RE 
artifacts of various kinds?

Q: what use could we imagine for generated artifacts obtained by 
manipulating specific features?

Q: is really RE so ill-conditioned that fuzziness in reconstruction would make 
any use impossible? (bonus point: even as creativity prompt?)



Attention!
RNNs work on linear sequences, whereas CNNs work on fixed-shape 
neighbourhoods…

… but this is not how the mind of a Requirements Engineer works!

Rather, we tend to follow threads of interest in the richly interwoven fabric 
of conflicting constraints and desires that make up the bulk of RE.

Can a NN be taught to identify and follow such threads in a bulk of complex 
material?



Attention!
Indeed, by buiding a NN architecture that 
includes a RNN, which directs a CNN to where 
to look next, we can simulate such a thread of 
interest.

Again, this works in graphics.

Q: would that work in RE artifacts?



Conclusions
There are many forms of NN, each apt to help with certain problems based 
on their underlying structures

Patterns, features, sequences, codes, graphs, … 

Researchers in AIRE have to familiarize themselves with the tools available

● which is not that easy: formal subtleties and optimization pitfalls abund
● on the other hand, we can ask ourselves questions that border on sci-fi

Looking for some answer in AIRE’18!


